Direct detection of dark matter at Jaduguda Underground Science Laboratory

Suraj Ali
On behalf of SLD Group
Saha Institute of Nuclear Physics
Kolkata, India
January 24, 2023
AAPCOS - 2023

Outline

- Introduction
- Present Work
 - A) Detector Fabrication
 - B) Calibration run at SINP Lab
 - C) Run at JUSL
- Preliminary results
- Future direction

Introduction

- Existence of Dark Matter (DM) confirmed by astronomical observations.
- The most favoured candidate of DM is Weakly Interacting Massive Particles (WIMPs).
- DM can be detected by direct, indirect or collider search experiment.
- We are interested in direct detection experiment.

Leading experiments (LZ & PICO)

- The minimum of the limit curve (WIMP-neutron spin-dependent) is at m_χ = 26 GeV at a cross section of σ^n_{SD} = 1.1 × 10⁻⁴² cm²[1].
- The minimum of the limit curve (WIMP-proton spin-dependent) is at m_χ = 26 GeV at a cross section of σ $^p_{SD}$ = 3.1 × 10⁻⁴¹ cm²[1].
- The minimum of the limit curve for (WIMP-proton spin-dependent) cross section is 3.2 \times 10⁻⁴¹ cm² for a 25 GeV WIMP mass [2].

Ref. - [1] ArXiv:2207.03764v[hep-ex] 18 Oct 2022 [2] PHYSICAL REVIEW D **100**, 022001 (2019)

Low-Mass Experiments

Low Mass WIMP Scattering Results from different Experiments													
S. No	Experiment Name	Underground Lab Location	Lowest WIMP Mass (GeV/c2)	Corresponding Cross Section (cm2)	Target	Detector Type	Reference						
1	LUX-ZEPLIN	SURF, USA	9	1.0E-46	Liquid Xenon	Cryogenic Dual Phase TPC	arXiv:2207.03764 [hep-ex]						
2	CRESST-3	LNGS, Italy	0.16 to 2.5	1.0E-34	CaWO4	Cryogenic	arXiv:2207.07640 [astro-ph.CO]						
3	NEWS-G	SNOLab, Canada	0.5	4.0E-37	Ne+CH4	Spherical Proportional Counter	Astropart. Phys. 97, 54 (2018)						
4	SuperCDMS	SNOLab, Canada	more than 100 MeV/c2	~1E-34	Ge	Cryogenic	PHYS. REV. D 102, 091101 (2020)						
5	DarkSide-50	LNGS, Italy	1.2	1.1E-41	LAr	Noble Gas, Cryogenic	arXiv:2207.11966 [hep-ex]						

- We are interested in low-mass region of DM.
- Requires low threshold energy and low mass target detector.
- Detector for present work: Superheated Liquid Detector (SLD).
- For low mass target, SLD with C₂H₂F₄ (b.p.: -26.3 °C) has been chosen.
- Also, under ground laboratory has been chosen to minimise the background.

Jaduguda Underground Science Laboratory (JUSL)

At a depth: 555m (cavern size ~7m x 4m x 2.2m)

Background level - JUSL

Cosmic muon flux:

- $(2.257\pm0.261\pm0.042) \times 10^{-7} / \text{cm}^2 / \text{sec}$ (plastic scintillator)
- (2.051±0.142±0.009)x 10⁻⁷/cm²/sec (simulation)

Neutron flux, En ≤10MeV:

- (1.63±0.03) x 10⁻⁴ /cm²/sec [⁴He detector]
- Cosmogenic neutrons (simulation): (5.661±0.103)x10⁻⁸/cm²/sec

Gamma-rays:

- Spectrum upto 2.6MeV is similar to the surface. Above 2.6MeV 4MeV , 1 order of magnitude reduced at the underground. [CsI(TI)]
- SLD will be used in various steps with increasing mass and reducing backgrounds.

Working Principle of SLD

- Phase transition in SLD starts with the formation of embryonic vapour bubble.
- Radius of droplets should be equal or greater than the critical value (R_c).
- To form a bubble of critical radius (R_c), the particle should deposit energy greater than a certain threshold energy (E_{th}).

Response of SLD to WIMPs

• The energy(E) must be greater than threshold energy(E_{th}) so that deposited energy must be greater than the critical energy (E_c) to form a bubble of critical radius.

$$E_{dep}^{(L_{eff})}(E \geq E_{th}) \equiv \int_{0}^{L_{eff}} (\frac{dE}{dx}) dx \geq E_{c}$$

 The target element is insensitive to WIMPs of masses below a certain lowest value and is given by,

$$m_{\chi,\text{lowest}}^{(i)} = m_{A_i} \left[\left(\frac{2m_{A_i} v_{\text{esc}}^2}{E_{R,\text{th}}^{(i)}} \right)^{1/2} - 1 \right]^{-1}$$

Expected rate of events:

$$\mathcal{R}_{\rm exp} = \sum_{i} \mathcal{R}_{\rm exp}^{(i)} = \sum_{i} \xi_{i} \int_{E_{R,\rm th}^{(i)}}^{E_{R,\rm max}^{(i)}} dE_{\rm R} \epsilon_{i}(E_{\rm R}) \left(\frac{d\mathcal{R}}{dE_{\rm R}}\right)_{i}$$

- $\varepsilon_i(E_R)$ = Bubble nucleation efficiency
- ξ_i = mass fraction of target element in detector

WIMPs masses by SLD with C₂H₂F₄ liquid

- Suitable choice of the operating temperature, a $C_2H_2F_4$ SLD can serve as a good detector for very low mass (sub-GeV—few GeV) WIMPs.
- Sub-GeV WIMPs can be detected due to the presence Hydrogen as a target in the detector.
- Presence of Hydrogen as target we can reach upto 0.14 GeV.

Ref - S. Seth, S. Sahoo, P. Bhattacharjee and M. Das, PRD **101**, 103005 (2020)

Sensitivity of SLD with C₂H₂F₄

- Expected spin-independent WIMP-nucleon cross section, as a function of WIMP mass, under zero background.
- The lowest WIMP mass that can be probed at 35 °C is 2.2 GeV.
- At 55 °C, the sensitivities are 6.2×10^{-42} , 3.7×10^{-41} , 2.9×10^{-40} , and 5.6×10^{-40} cm² at WIMP mass of 0.8, 0.7, 0.5, and 0.3 GeV, respectively.

Detector fabrication

at SINP Lab

- Complete detector fabrication is a long procedure takes around two weeks.
- Initially the gel-matrix is fabricated and degassed to remove air bubbles inside the gel-matrix.
- The active liquid ($C_2H_2F_4$) is purred at high pressure and rotated by stirrer to form liquid droplets inside the gel-matrix.
- The pressure is released very slowly to maintain the superheated state and it is kept at low temperature.

Calibration

Measurement – 1 Gamma-ray sensitivity of SLD

- After, certain temperature SLD become sensitive to gamma-rays.
- The threshold temperature of gamma ray induced nucleation is 38.5 ±1.4 °C.
- Corresponding threshold energy is 1.55 keV.

Ref. - S. Sahoo et al, Nucl. Instrum. Meth. A 931, 44 (2019)

Measurement – 2

Discrimination of nuclear recoil and gamma-rays

- Response of SLD with neutrons and gamma-rays has been checked.
- For gamma-rays measurement has been done using ¹³⁷Cs of activity 5 mCi at temperature of 50 °C.
- Similar measurement has been done for neutrons with ²⁴¹AmBe of activity 10 mCi at temperature of 32 °C.

Ref. - S. Ali, M. Das, Nucl. Instrum. Meth. A 1025, 16186 (2022)

Discrimination

- Fast Fourier transformation has been done on the of neutrons and gamma-raysinduced signals.
- Frequencies of the neutron-induced signals are localised around 80 kHz.
- For gamma-rays, the frequencies are distributed between 50 and 100 kHz and a narrow distribution around 20 kHz.
- There is no other low frequency peak in the FFT spectrum of the signals at other temperatures between 32 °C and 55 °C except near 20 kHz.

Ref. - S. Ali, M. Das, Nucl. Instrum. Meth. A **1025**, 16186 (2022)

Discrimination

- $\sum v_i^2$ considered as Pvar.
- Pvar, Duration of signal and Numbers of peak of gamma-rays induced signals is high.
- These are good parameters to discriminate neutron and gamma-ray-induced signals.

Ref. - S. Ali, M. Das, Nucl. Instrum. Meth. A 1025, 16186 (2022)

Test run at JUSL

- Operating temperature of SLD is 24.3 °C ± 0.5 °C (Lab temperature).
- Large numbers of low frequency (20 Hz to 20 kHz) noises are present at JUSL.
- Background event rate at JUSL reduces by a factor of 2 than surface Lab.
- ²⁴¹AmBe (activity 10mCi) neutron source has been used for the calibration.

Ref. - S. Sahoo, S. Ali, M. Das, N. Biswas, P. Pallav, J. Basu, Nucl. Instrum. Meth. A 1008, 165450 (2021).

Experiment at JUSL

- 500ml SLD : ~50 days of run
- Active liquid $(C_2H_2F_4) \sim 22.94$ ml
- Expected exposure ~1.33kg-days
- Operating temp ~24°C and threshold ~ 7 keV
- Run: Start date: 27/07/2022
 - End date: 16/12/2022
- Count rate at JUSL /gm/sec $2.5 \times 10^{-6} \pm 1.80 \times 10^{-7}$
- Count rate at SINP-lab /gm/sec $2.13x10^{-5} \pm 1.23x10^{-5}$

Result of ongoing JUSL run (Very Preliminary)

The minimum crosssection is $(6.51^{+1.76}_{-2})$ $\times 10^{-34}$ cm² corresponding WIMPs mass is 14.6 GeV.

Timeline & milestone:

No of detector	Total volume of SLD (ml)	Active liquid (gm)	Exposure (kg-days)	Expected Time	Operati ng Temp.	Threshold (keV)		Sensitivity projected (cm ²)
1	100 SDD	4.8	101.2 (gm-hr)	Sept 2019	~24°C	7.13	pe	~1E-32
1	500 SDD	26.84	1.304	July 2022- Oct 2022	~24°C	7.13	Estimated	~1E-35
1	500 SDD	26.16	1.347	Oct – Dec 2022	~24°C	7.13	ш	u
2 x 500 ml	1000 SDD	53.0	2.66 7 (~50days)	Feb – May 2023	35°C	1.92	ds	1.94E-41
8	4000	212.0	10.670 (~50days)	July – Dec 2023	35°C	1.92	roun	9.71E-42
Geyser type	1000	1170	105.3kg-days (3 months)	2024	35°C	1.92	backgrounds	9.84E-43
Geyser type				2025	55°C	0.19	zero	9.84E-43

Acknowledegment

SINP:

- Dr. Mala Das
- •Mr. Vimal Kumar
- •Mr. Nilanjan Biswas
- Dr. Sunita Sahoo
- Dr. Jisnu Basu & workshop
- Mr. S. Pal & Electrical section
- Mr. Piyush Pallav
- Prof. P. Bhattacharjee
- Prof. S. Saha
-

VECC:

- Mr. Niraj Chadda
- Mr. Shantonu Sahoo
- Dr. A. Roy
- Dr. S. Pal
- •

Members of UCIL, Jaduguda Mine

- V. N. Jha and group
- HPU Jaduguda

BARC

Thank You