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* The DEAP-3600 (Dark matter Experiment using Argon Pulseshape discrimination) experiment is located approximately 2 km
underground at SNOLAB underground facility in Sudbury, Canada.

* Liquid argon (LAr) is used as the target material -- acquires scintillation light signal.

 Scintillation time profile provides discrimination between nuclear recoil and electron-recoil events ---nuclear recoil event
produces more light in prompt time window.
* Data was collected from November, 2016 — March, 2020, now undergoing hardware upgrades.

* Analyses of three years data set are in progress to improve the background model and to have the improved limit on
WIMP-nucleon spin-independent cross section.

* Expected to fill the detector and start collecting data near end of 2023.

[Refs: P.-A. Amaudruz et al., Astroparticle Physics 108 (2019) 1-23, R. Ajaj et al., Physical Review D 100, 022004 (2019) ]



Overview : Quenching Factor

A portion of deposited energy by incident particle within a scintillating material (e.g.

liquid argon) leads to light generation. This effect is known as “quenching”.

Quenching depends on incident particle’s type and energy.

Measured Energy _  Detectected Photoelectrons

uenching Factor = =
Q g Deposited Energy  LightYield xDeposited Energy

Light yield relates the energy deposited in the detector to the number of detected
photoelectrons (PEs).

* It can be measured from the calibration of energy response of detector using
gammas/electrons.




Importance of Alpha Quenching Factor

* Alpha particles are one of the intrinsic backgrounds.
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Objectives: Analysis Method

* Absolute uncertainty of alpha quenching factor is not known for the DEAP-
3600 experimental data.

* Present approach is to make the relative measurement of alpha quenching
factor at high energy (~MeV).

* Exploring the shape of the quenching factor vs energy curve considering
relative uncertainties in quenching factor at high energy.

* Probing the uncertainty of extrapolating the quenching factor to the low-
energy region (~ few tens to few hundreds keV).




Measurement of Alpha Quenching Factor



Alpha Induced Events
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Relative Measurement of Quenching Factor

« DEAP-3600 detector is calibrated at low energy (keV to 1.3 MeV) region whereas alphas have energies
comparatively at higher region (approx. 5-8 MeV).

* Non-linearity in the measurement of light yield can lead to incorrect evaluation of quenching factor.

e Step | : Estimation of relative light yield using :

Alpha quenching factor for 21°Po isotope = le){’(l,‘lfoet al- = 0,71 + 0.028. [Ref: T. Doke et al. NIMA 269
(1988) 291]

Photoelectron (PE) value for alphas from 222Rn in DEAP-3600 data.

calib _ [Assumption: Negligible difference in quenching factor of alphas
02224, 0-71 1 0.028 originated from 2°Po and 222Rn isotopes because energies of
alphas are nearly same (5.304 MeV and 5.489 MeV respectively).]

— Calib
PEy7,. = Q722 X Ezppp X LYpeiative




Relative Measurement of Quenching Factor
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Uncertainties in Quenching Factor

Isotope | Alpha PEisotope Uncertainty | Quenching Relative Uncertainty Comments
Energy PE— - PE;sotope Factor Uncertainty in
in 222Rn PEyp0p. in Quenching | Quenching
MeV Factor Factor
210pg 5.305 - - 0.710 - 0.028 Ref : T. Doke et al.,
NIMA 269 (1988) 291

222Rn 5.489 - - 0.710 - 0.028 Calibration data
[QF is assumed to be
same as 219Po data]

|
|
|
|
|
|
|
218pQ 6.002 1.096 0.002 0.712 0.001 0.028 From relative :
1
|
1
|
|
|
|
|

measurement
214Pg 7.686 1.410 0.006 0.715 0.003 0.028 From relative
measurement




Development of Energy Dependent
Quenching Factor Curve



Quenching Factor Model

Birks’ Law

Lindhard’s Approach

e Local concentration of quenching agent (damage molecule)
at any point on the track is proportional to stopping power of
incident particle.

* Describes measured light per unit length (dL/dr) as a function
of the electronic energy loss per length (dE/dr).

dE
L Ag; dL A
dr  1+kB=—- dE
r

A, kB are treated as fitted constants and can be estimated from
experimental data.

* Quenching factor :
Nstep

L 1 A
dE N

QF ir s(E) =
Birk dE

Nstep step =1 1+ kB (_)
i

dr

* Total energy loss by an incident particle within a
substance can be divided into two parts :

Produces electronic excitation or ionization
(electronic collision).

Produces translational motion of whole
atom, excluding internal excitation of the
atom (nuclear collision).

* Energy lost in ionization plays significant role in
producing scintillation light.

* Quenching factor :

QFLindhard(E) =

Edep,electronic

Edep,electronic + Edep,nuclear

[Refs: J. B. Birks, Proc. Phys. Soc. A 64 (1951) 874, J . Lindhard et al., Mat. Fys. Medd. Dan . Vid. Selsk . 33, no . 10 (1963 )]
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Birks Quenching Factor
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1-sigma contour is drawn in (kB, A) parameter space.

Shape of the 1-sigma band (green curve) depends on relative
uncertainties of the DEAP-3600 data.

At MeV energy, the relative uncertainty in quenching factor is
quite small (0.2 - 0.4 %) = leads to constraint the energy
dependence of quenching factor well = nearly flat.

The asymmetric shape of uncertainty band comes from the worst
(kB, A) fit which is consistent with the data points at the 1 sigma
level.

1-0 upper and lower bands (green curve) are multiplied by

b Quiin? 2225

J— —_ H n

Rl — T 222pn and Rz = 222pn’ respectlvely. [Qmin and
max min

222p,
max  are extracted from green curve ]

Shape (blue curve) is determined by 1-0 error band using
relative uncertainties and consider absolute uncertainty of
calibration data.

Provides maximum and minimum values of quenching factor

for each energy.
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Lindhard-style Quenching Factor

SRIM-2013 (The Stopping and Range of lons in Matter)
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Lindhard-style Quenching Factor for 10 keV - 10 MeV using SRIM stopping power curves.
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e Method is adopted from D.-M. Mei et al. approach [Ref:
Astroparticle Physics 30 (2008) 12] which was used for nuclear
recoils of few tens to few hundred keV:

U Quenching Factor = Lindhard-style Quenching Factor X Birks’
Quenching Factor.

W Birks’ Quenching Factor is dominant at higher energy region,
whereas Lindhard-style quenching plays important role in lower
energy region.

In (30 — 600) keV energy region,

* Electronic stopping power is dominant for alphas whereas in case
of “°Ar nuclear recoil, electronic and nuclear stopping power are
comparable.

 For alphas, greater than 80% of total energy loss is due to
electronic collision whereas nuclear recoils this is about (30 — 70)%.
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Energy Dependent Alpha Quenching Factor in Liquid Argon
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e Shape of the 1-0 error band for quenching factor can be validated by the measurement of quenching factor.
 Measurements of alpha quenching factors for few hundreds of keV — few MeV region using Argon-1 (a modular single
phase liquid argon cryostat ) at Carleton University are underway.
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Summary and Outlook

* Relative measurement of alpha quenching factor is performed considering T. Doke
et al’s alpha quenching data for 2!°Po as calibration data.

* We can well-constrain the energy dependence of quenching factor by using relative
uncertainties.

 1-sigma uncertainty bands for energy dependent quenching factor curve are
developed which will be validated by experimental results.

* Direct measurement of alpha quenching at Carleton University in a small argon
detector is underway.
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Activity of alpha —decays
within liquid argon

222Rn LAT (0.153 £ 0.005)
uBa/kg

218pg L Ar (0.159 £ 0.005)
uBa/kg

214pg LAr (0.153 + 0.005)

uBa/kg

Phys. Rev. D 100, 022004 (2019)
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.022004

Neck Alpha Backgrounds

 Originated from 21°Po a-decays on the acrylic surfaces of flowguides

located at the neck of the detector.

* Produces significant

backgrounds

shadowed/degraded alpha decays.

* Position of shadowed alpha-decay events tends to reconstruct within
fiducial volume.
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Results in an F distribution
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.022004

Dust Alpha Backgrounds

« 238 and 23?Th decay chain present on dust particulates can be the source of alphas.

 Dust particles shadow the scintillation light and degrade energy of the alpha particles.

« Different dust sizes are simulated and the size distribution is modelled by a power law.
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