Supernova remnants as Galactic PeVatron candidates

Agnibha De Sarkar
Senior Research Fellow, Astronomy & Astrophysics group
Raman Research Institute

Advances in Astroparticle Physics and Cosmology AAPCOS-2023 23rd - 27th January, 2023

Galactic PeVatrons and LHAASO:

Cosmic Ray Spectra of Various Experiments

- PeVatrons are Galactic sources accelerating particles to the knee energy (~ 3 PeV).
- Recent progress in air shower arrays (e.g. LHAASO) has enlarged the list of PeVatron candidates substantially.
- SNR+MCs, PWNe, young stellar clusters are some of the leading candidates for being the Galactic PeVatrons.

Galactic PeVatrons and LHAASO:

LHAASO J1908+0621: Source association

- Middle aged (20 40 kyr) radio SNR G40.5-0.5 (D ≈ 8 kpc).
 - a) D \approx 3.5 kpc from CO observation
 - b) D \approx 5.5 8.5 kpc from Σ -D relation.
- PSR J1906.2+0631, radio pulsar, D \approx 7.9 kpc, likely associated with SNR G40.5-0.5.
- PSR J1907+602, GeV & radio pulsar,
 - a) spin period ≈ 107 ms
 - b) spin-down luminosity $\approx 2.8 \times 10^{36} \text{ erg } s^{-1}$
 - c) Characteristic age 19.5 kyr
 - d) D \approx 3.2 \pm 0.6 kpc from dispersion measures
- 4FGL J1906.2+0631, unidentified GeV source, distance unknown.

• 12_{CO} (J = 1 - 0) (left) & 13_{CO} (J = 1 - 0) (right) intensity maps, integrated in the velocity range 46-66 km s^{-1} .

LHAASO J1908+0621: Source morphology

- Pulse profile of PSR J1907+0602 above 300 MeV with an ROI of 0.6^{o} . Two rotational pulse periods with a resolution of 100 phase bins per period are shown. Off-peak intervals are 0.0-0.136 and 0.697-1.0 (Li et al. 2021).
- An extended source, dubbed as Fermi J1906+0626 was found, associated with LHAASO J1908+0621 (Li et al. 2021).

Li et al., ApJL, (2021)

LHAASO J1908+0621: Source morphology

H.E.S.S. morph., 100 GeV - 100 TeV

Right ascension LHAASO morph., E > 100 TeV

Cao et al., Nature, (2021)

- Explosion inside a tenuous spherical cavity, surrounded by dense MCs.
- Free expansion for \sim 200 years, SNR enters Sedov phase.
- Shock front expands radially while particles accelerate through DSA at the shock front.
- Confinement region around shock front due to strong magnetic turbulence.
- Outermost boundary of containment region collides with surrounding MC surface, SN enters momentum conserving phase, the particles accelerations stops.
- Comparatively higher energy protons escape confinement region and enter the dense MC region, while lower energy protons are still confined around SNR.
- Consequently, a suppression in the proton injection spectral shape at lower energies is expected.
- Escaped protons interact with cold protons inside MCs, producing gamma-rays and neutrinos.
- The total gamma-ray and neutrino flux is calculated at the time of collision, assuming that the particles lose energy rapidly before escaping due to slow diffusion inside the MCs.

LHAASO J1908+0621: SNR G40.5-0.5 + MCs (Hadronic)

Equations governing SNR evolution : <u>Velocity evolution equations:</u>

1)
$$v_{sh}(t) = v_i$$
 (t < t_{Sedov})
= $v_i (t/t_{Sedov})^{-3/5}$ (t > t_{Sedov})

Radius evolution equations:

2)
$$R_{sh}(t) \propto (t/t_{Sedov})$$
 $(t < t_{Sedov})$
 $\propto (t/t_{Sedov})^{2/5}$ $(t > t_{Sedov})$

Minimum energy needed by protons to escape:

$$R_{sh}$$
 3) $E_{esc} = E_{max} \left(\frac{R_{sh}}{R_{Sedov}}\right)^{-\alpha}$

Spectrum of the escaped protons $(E > E_{esc})$:

4) N(E >
$$E_{esc}$$
) $\propto E^{-[s+(\beta/\alpha)]}$

Parameter Values :

• Sedov time, t_{Sedov} = 210 years

• Initial shock velocity, $v_i = 10^9$ cm/s

• Maximum energy, E_{max} = $10^{15.5}$ eV

• Distance to MC surface, r_{MC} = 22 pc

• DSA acceleration index, s = 2.0

• Suppression index, $\alpha = 2.0$

• Thermal leakage index, β = 1.5

• Collision time, $t_{coll} = 7.5 \times 10^3$ years

• Velocity at collision, $v_{sh}(t_{coll}) = 1.2 \times 10^8 \frac{cm}{s}$.

• Diffusion inside a molecular cloud D(E) $\approx 10^{28} \, \chi$ $(E/10~GeV)^{\delta}~cm^2s^{-1}$, where δ = 0.3-0.6 and $\chi \leq$ 0.01.

•
$$\alpha_p = 2.75$$

• $E_{min} \approx 30 \text{ TeV}$

• $E_{max} \approx 3.2 \text{ PeV}$

• $W_p \approx 2.5 \times 10^{49} \text{ erg}$

• $B_{MC} = 60 \, \mu G$

• $n_{MC} = 45 cm^{-3}$.

LHAASO J1908+0621: SNR G40.5-0.5 + MCs (Leptonic)

- Electrons also get accelerated at the SN shock front.
- The escaped electron spectrum is assumed to resemble that of proton, i.e. $\alpha_e^{SNR}\approx$ 2.75.
- Power law with exponential cut-off as the spectrum of escaped electron population.
- $E_{max}^{e,SNR} \approx 14 \, (v_{sh}(t_{coll})/10^8 \, \, cm/s) (B_{MC}/10 \, \mu G)^{-1/2} \, {\rm TeV}; \, E_{min}^{e,SNR} \approx 500 \, {\rm MeV}.$
- Inverse-Compton, Bremsstrahlung & Synchrotron considered. Bremsstrahlung is dominant.
- Total energy budget, $W_e^{SNR} \approx 1 \times 10^{49}$ erg.

- Distance & age are considered to be 3.2 kpc and 19.5 kyr.
- IC, synchrotron and bremsstrahlung are considered. IC & synchrotron are dominant.
- Magnetic field of the order of $\sim \mu G$; $B_{PWN} \approx 3 \mu G$ considered for synchrotron.
- Galactic ISRF and CMB considered as target photon for IC.
- Power law with exponential cut-off as electron spectrum.
- Injection spectral index, $\alpha_e^{PWN} \approx$ 1.5; minimum energy, $E_{min}^{e,PWN} \approx 0.511$ MeV (electron rest mass energy).
- Maximum energy, $E_{max}^{e,PWN} \approx 10$ TeV, constrained by X-ray upper limits.

- Although not significant yet, a neutrino hotspot has been observed coincident with LHAASO J1908+0621.
- Neutrinos are also produced in hadronic p-p interaction, along with gamma-rays.
- Muonic neutrino flux calculated through two channels.
 - 1) Direct decay of charged pions ($\pi \to \mu \nu_{\mu}$).
 - 2) Decay of muons ($\mu \rightarrow e \nu_{\mu} \nu_{e}$).
- Total estimated muon neutrino flux exceeds ICECUBE-Gen2 sensitivity limit to detect the neutrino flux from a point source at the celestial equator with an average significance of 5σ after 10 years of observations.

Summary:

- A candidate PeVatron source, LHAASO J1908+0621, was studied.
- Observed LHAASO data, as well as data observed by H.E.S.S., VERITAS were explained by hadronic interaction between SNR G40.5-0.5 and associated MCs.
- Leptonic contributions from SNR+MC system and PWN J1907+0602 were also considered to explain the Fermi-LAT, H.E.S.S., VERITAS data.
- The multi-wavelength SED was explained by the model. The model is also consistent with the observed morphology. The total synchrotron emission does not violate the observed X-ray upper limits.
- With the model, the neutrino hotspot can be consistently explained.
- Further observations at UHE energy are needed to confirm the source contribution.