Introduction to perturbative QCD

Giancarlo Ferrera

giancarlo.ferrera@mi.infn.it

Università di Milano & INFN Milano

Saha Theory Workshop – SINP – Kolkata – 23/2/2016

Outline	PDFs	Partonic Hard Cross Section	Shower Monte Carlo	Conclusions

Outline

2 Partonic Hard Cross Section

LHC key results: Higgs signal

- Observation of the Higgs boson through sharp mass peak, $m_H \simeq 136 GeV$, in various channels.
- Its properties are consistent with the Standard Model (SM) predictions at the ±20% level: this accuracy can (must!) be further reduced with the help of more theoretical work.

LHC key results: and much more

 Very good agreement between experimental results and SM theoretical predictions of the high-Q² processes

Motivations

- The LHC is a (large) hadron collider machine: all the interesting high- p_T reactions initiate by QCD hard scattering of partons.
- To claim for new-physics signals a good control of the SM processes is necessary.

proton - (anti)proton cross sections

To fully exploit the information contained in the LHC experimental data, precise theoretical predictions of the SM cross sections are needed.

Theoretical predictions at the LHC

Introduction to perturbative QCD

 $h_1(p_1)$

 $h_2(r$

 $f_{a/h_1}(x_1, \mu_F^2)$

 $a(x_1p_1)$

 $b(x_2p_2)$

F(Q

Theoretical predictions at the LHC

$$h_1(p_1) + h_2(p_2) \rightarrow F(Q) + X$$

The framework: QCD factorization formula

$$\sigma_{h_1h_2}(p_1, p_2) = \sum_{a,b} \int_0^1 dx_1 \int_0^1 dx_2 f_{a/h_1}(x_1, \mu_F^2) f_{b/h_2}(x_2, \mu_F^2) \hat{\sigma}_{ab}(x_1p_1, x_2p_2; \mu_F^2) + \mathcal{O}\left(\frac{\Lambda_{QCD}}{Q}\right)^p$$

- f_{a/h}(x, μ_F²): Non perturbative universal parton densities (PDFs), μ_F ~ Q. Measured from experiments at a given scale μ₀, Evolution to μ_F calculable in pQCD through DGLAP equation.
- $\hat{\sigma}_{ab}$: Hard scattering cross section. Process dependent, calculable with a perturbative expansion the strong coupling $\alpha_S(Q) \sim 1/(\beta_0 \ln Q^2/\Lambda_{QCD}^2) \sim 0.1$ (for $Q = m_H, m_W, m_Z, m_t, p_T^{jet}, \cdots$).

$$\hat{\sigma}_{ab} = \hat{\sigma}_{ab}^{(0)} + \alpha_{S}(\mu_{R}^{2}) \ \hat{\sigma}_{ab}^{(1)} + \alpha_{S}^{2}(\mu_{R}^{2}) \ \hat{\sigma}_{ab}^{(2)} + \mathcal{O}(\alpha_{S}^{3}).$$

• $\left(\frac{\Lambda_{QCD}}{Q}\right)^{p}$ (with $p \ge 1$): Non perturbative power-corrections (higher-twist). Precise predictions for σ depend on good knowledge of both $\hat{\sigma}_{ab}$ and $f_{a/h}(x, \mu_{F}^{2})$

Introduction to perturbative QCD

Saha Theory Workshop - SINP - Kolkata- 23/2/2016

Outline	PDFs	Partonic Hard Cross Section	Shower Monte Carlo	Conclusions

Fit of PDFs

• Method: typical parametrization of parton densities at input scale $\mu_0^2 \sim 1 \div 4 ~ GeV^2$:

$$x f_a(x, \mu_0^2) = A_a x^{\lambda_a} (1-x)^{\eta_a} (1 + \epsilon_a \sqrt{x} + \gamma_a x + \cdots).$$

Parameters constrained by imposing momentum sum rules: $\sum_{a} \int_{0}^{1} dx \times f_{a}(x, \mu_{0}^{2}) = 1$, then adjust parameters to fit data.

- Typical constraining process:
 - DIS (fixed target exp. and HERA): sensitive to quark densities.
 - Jet data (HERA and Tevatron): sensitive to high-x gluon density.
 - Drell-Yan (low energy and Tevatron data): sensitive to (anti-)quark densities.
- Evolution $\mu_0 \rightarrow \mu$ using DGLAP equations:

$$\frac{\partial f_{a}(x,\mu^{2})}{\partial \ln \mu^{2}} = \frac{\alpha_{S}(\mu^{2})}{2\pi} \int_{x}^{1} \frac{d\xi}{\xi} P_{ab}(x/\xi) f_{b}(\xi,\mu^{2})$$

AP kernels calculable in pQCD

$$P_{ab}(z) = P_{ab}^{(0)}(z) + rac{lpha_{S}(\mu^{2})}{2\pi} P_{ab}^{(1)}(z) + \left(rac{lpha_{S}(\mu^{2})}{2\pi}
ight)^{2} P_{ab}^{(2)}(z) + 2$$

PDFs

PDFs

 Several PDFs sets available: MSTW, NNPDF, CTEQ/CT, GJR, ABKM, HERAPDF.

MSTW: \sim 3000 data pts., \sim 50 free param. NNPDF: \sim 3000 data pts., \sim 250 free param.

- Differences among sets include: data set in the fit, parton parametrization, statistical treatment, perturbative accuracy (NLO,NNLO), value of α_S.
- PDFs sets can be combined using the "PDF4LHC recommendation" to obtain a central value and an estimate of the uncertainty.
- Simultaneous extraction of $\alpha_S(m_Z)$ from NNLO fits lead to some tension: World avg.'12 $\alpha_S(m_Z) = 0.1184 \pm 0.0007$ ABKM11 $\alpha_S(m_Z) = 0.1135 \pm 0.0014$ MSTW08 $\alpha_S(m_Z) = 0.1171 \pm 0.0014$ NNPDF2.1 $\alpha_S(m_Z) = 0.1173 \pm 0.0011$ JR09 $\alpha_S(m_Z) = 0.124 \pm 0.002$

() 1.2 () 1.15

1.1

1.05

0.95 **MSTW**

0.9

0.8

0.85

2008 NLO (68%

gg luminosity at LHC (\s = 7 TeV)

MSTWO

CTEOS.6

102 108 180 288 tF 10

√ŝ/s

PDFs

PDFs

Several PDFs sets available: MSTW, NNPDF, CTEQ/CT, GJR, ABKM, HERAPDF.

MSTW: \sim 3000 data pts., \sim 50 free param. NNPDF: \sim 3000 data pts., \sim 250 free param.

- Differences among sets include: data set in the fit, parton parametrization, statistical treatment, perturbative accuracy (NLO,NNLO), value of α_{S} .
- PDFs sets can be combined using the "PDF4LHC recommendation" to obtain a central value and an estimate of the uncertainty.
- Simultaneous extraction of $\alpha_{S}(m_{7})$ from NNLO fits lead to some tension. World avg.'12 $\alpha_S(m_Z) = 0.1184 \pm 0.0007$ ABKM11 $\alpha_{\rm S}(m_{\rm Z}) = 0.1135 \pm 0.0014$ MSTW08 $\alpha_{\rm S}(m_{\rm Z}) = 0.1171 \pm 0.0014$ NNPDF2.1 $\alpha_S(m_Z) = 0.1173 \pm 0.0011$ JR09 $\alpha_S(m_Z) = 0.124 \pm 0.002$

Partonic Hard Cross Section

Giancarlo Ferrera – Università & INFN Milano Introduction to perturbative QCD Saha Theory Workshop - SINP - Kolkata- 23/2/2016

Higher orders: NLO

- Calculations at LO give the order of magnitude of cross sections and distributions, NLO corrections provide reliable estimate
- Experiments have finite acceptance important to provide exclusive theoretical predictions.
- At NLO infrared singularities in *real* and *virtual* corrections prevent the straightforward implementation of Monte Carlo numerical techniques (especially for fully exclusive quantities).

NLO subtraction method: introduction of auxiliary QCD cross section in a general way exploiting the universality of the soft and collinear emission
 [Frixione,Kunszt,Signer('96) (FKS), Catani,Seymour('97) (CS)]. It allows
 (relatively) straightforward calculations, once the QCD amplitudes are available

$$\sigma^{NLO} = \int_{m+1} d\sigma^{R}(\epsilon) + \int_{m} d\sigma^{V}(\epsilon)$$
$$= \int_{m+1} \left[d\sigma^{R}(\epsilon) - d\sigma^{A}(\epsilon) \right]_{\epsilon=0} + \int_{m} \left[d\sigma^{V}(\epsilon) + \int_{1} d\sigma^{A}(\epsilon) \right]_{\epsilon=0}$$

Giancarlo Ferrera – Università & INFN Milano

Saha Theory Workshop – SINP – Kolkata– 23/2/2016

Introduction to perturbative QCD

Higher orders: NLO

- Calculations at LO give the order of magnitude of cross sections and distributions, NLO corrections provide reliable estimate
- Experiments have finite acceptance important to provide exclusive theoretical predictions.
- At NLO infrared singularities in *real* and *virtual* corrections prevent the straightforward implementation of Monte Carlo numerical techniques (especially for fully exclusive quantities).

NLO subtraction method: introduction of auxiliary QCD cross section in a general way exploiting the universality of the soft and collinear emission
 [Frixione,Kunszt,Signer('96) (FKS), Catani,Seymour('97) (CS)]. It allows
 (relatively) straightforward calculations, once the QCD amplitudes are available

$$\sigma^{NLO} = \int_{m+1} d\sigma^{R}(\epsilon) + \int_{m} d\sigma^{V}(\epsilon)$$
$$= \int_{m+1} \left[d\sigma^{R}(\epsilon) - d\sigma^{A}(\epsilon) \right]_{\epsilon=0} + \int_{m} \left[d\sigma^{V}(\epsilon) + \int_{1} d\sigma^{A}(\epsilon) \right]_{\epsilon=0}$$

12/20

Higher orders: NLO

- Calculations at LO give the order of magnitude of cross sections and distributions, NLO corrections provide reliable estimate
- Experiments have finite acceptance important to provide exclusive theoretical predictions.
- At NLO infrared singularities in *real* and *virtual* corrections prevent the straightforward implementation of Monte Carlo numerical techniques (especially for fully exclusive quantities).

NLO subtraction method: introduction of auxiliary QCD cross section in a general way exploiting the universality of the soft and collinear emission
 [Frixione,Kunszt,Signer('96) (FKS), Catani,Seymour('97) (CS)]. It allows
 (relatively) straightforward calculations, once the QCD amplitudes are available

$$\sigma^{NLO} = \int_{m+1} d\sigma^{R}(\epsilon) + \int_{m} d\sigma^{V}(\epsilon)$$
$$= \int_{m+1} \left[d\sigma^{R}(\epsilon) - d\sigma^{A}(\epsilon) \right]_{\epsilon=0} + \int_{m} \left[d\sigma^{V}(\epsilon) + \int_{1} d\sigma^{A}(\epsilon) \right]_{\epsilon=0}$$

12/20

Introduction to perturbative QCD

NLO: virtual amplitudes

- The paradigm for the calculation of one-loop diagram is [Passarino, Veltman('79)].
- Any one-loop amplitude can be written as a linear sum of scalar box-, triangle-, bubble- and tadpole-integrals.

- Analytic results for these scalar integrals are known [Ellis, Zanderighi('08)].
- The traditional approach is not adequate when the number of external legs increase 2 → 3, 4, 5, ... (factorial growth of diagrams).
- Recently advances in multi-leg one-loop amplitudes calculations thanks to
 - New semi-numerical methods based on on-shell recursion relations and unitarity: isolate coefficients by cutting propagators [Bern,Dixon,Dunbar, Kosower('94)], [Britto,Cachazo,Feng('04)].
 - Tensor integrals to scalar master integrals reduction performed numerically at the integrand level in a algorithmic way [Ossola,Papadopoulos, Pittau('06)].

NLO: automation

- NLO calculations are now highly automated. Virtual corrections can be combined with real corrections (based on CS or FKS subtraction formalism).
- HELAC-NLO[Bevilacqua,Czakon,Garzelli, van Hameren,Kardos,Papadopoulos, Pittau,Worek].
- BlackHat+Sherpa [Berger,Bern,Dixon,Cordero, Forde,Gleisberg,Ita,Kosower,Maitre].
- MadLoop+MadFKS[Hirschi,Frederix,Frixione, Garzelli,Maltoni,Pittau].
- Rocket [Ellis,Giele,Kunszt,Melnikov,Zanderighi].
- GoSam [Cullen,Greiner,Heinrich,Luisoni, Mastrolia,Ossola,Reiter,Tramontano].
- OpenLoops [Cascioli,Maierhöfer,Pozzorini].
- NLO dedicated calculations also available: MCFM, VBFNLO,NLOJet++,....

Introduction to perturbative QCD

Higher orders: fully-exclusive NNLO calculation

- NNLO corrections allow a good control of theoretical uncertainties: important to provide exclusive prediction to implement the experimental cuts.
- NNLO computations in hadronic collisions cumbersome, anyway several calculations with few alernative methods performed:
 - Sector decomposition: [Binoth, Heinrich('00)], [Anastasiou, Melnikov, Petriello('04)]
 - q_T-subtraction: [Catani, Grazzini('07)]
 - Antenna subtraction: [Gehrmann,Gehrmann-De Ridder,Glover('05)]
 - Non-linear mapping: [Anastasiou, Herzog, Lazopoulos('10)]
 - Sector-improved subtraction: [Czakon('10)]

Higher orders: fully-exclusive NNLO calculation

- NNLO corrections allow a good control of theoretical uncertainties: important to provide exclusive prediction to implement the experimental cuts.
- NNLO computations in hadronic collisions cumbersome, anyway several calculations with few alernative methods performed:
 - Sector decomposition: [Binoth, Heinrich('00)], [Anastasiou, Melnikov, Petriello('04)]
 - q_T-subtraction:[Catani,Grazzini('07)]
 - Antenna subtraction: [Gehrmann, Gehrmann-De Ridder, Glover('05)]
 - Non-linear mapping: [Anastasiou, Herzog, Lazopoulos('10)]
 - Sector-improved subtraction: [Czakon('10)]

Shower Monte Carlo

Giancarlo Ferrera – Università & INFN Milano Introduction to perturbative QCD Saha Theory Workshop – SINP – Kolkata– 23/2/2016

Shower Monte Carlo

Shower Monte Carlo

Complete description of a hadron scattering event.

- QCD parton shower (PS): Starting from LO QCD, inclusion of dominant collinear and soft-gluon emissions (by angular ordering thanks to color coherence) to all order in a approximate way as a Markov process (probabilistic picture).
- No analytic solution but simple iterative structure of coherent parton branching.
- QCD accuracy analogous to LL (plus part of NLL) Sudakov resummation.
- Scheme of QCD Parton Shower and Implemented in numerical Monte Carlo programs. hadronization from final states.
- QCD parton cascade matched with hadronization model for conversion of partons into hadrons (and model for resonance decay) \Rightarrow QCD event generators (Herwig/PYTHIA/Sherpa).
- Possible to consistently combine Parton Shower with high multiplicity tree-level matrix elements: CKKW/MLM matching.

Introduction to perturbative QCD

Saha Theory Workshop - SINP - Kolkata- 23/2/2016

Outline	PDFs	Partonic Hard Cross Section	Shower Monte Carlo	Jets	Conclusions

Jets

 QCD matrix elements enhanced in the collinear regions, this give rise to Jets: collimated spray of high-energy hadrons (ubiquitous at the LHC).

 Jet clustering algorithms (k_T,anti-k_T,C/A): iterative procedure to cluster particles in experimental analysis and in theoretical calculations (infrared/coll. safe).
 (i) Define a "distance" d_{ij} between particles.
 (ii) Merge particles with minimum d_{ij} until a fixed resolution d_{cut} is reached.

19/20

Outline	PDFs	Partonic Hard Cross Section	Shower Monte Carlo	Conclusions
Conclusions				

- This talk is an overview on some selected topic in pQCD.
- Main message: pQCD is always involved in the description of the LHC processes.

To fully exploit the information contained in the LHC data precise pQCD predictions are needed.

