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Introduction

Simple example

Power spectrum estimator
p(k) _ A(k)A(—k)

Mean power spectrum

(P(k)) = P(k)

S.d. of power spectrum
SP(k) = P(k)

\@y uncertain!




Introduction

Power spectrum estimator

Binned power spectrum estimator Ay
P(k) = (N, V)1 AMK)A(-K) Ak
averaged over k-modes (k to k + Ak)

Bin averaged power spectrum
(P(k)) = P(k) ?
And for a Gaussian random field the s.d.

5P(k) = [F2W

So, the error comes down as 1/,/ Ny,




Motivations

Motivations

It is commonly assumed, as in all the sensitivity estimates
(e.g. Morales 2005, McQuinn et al. 2006, Beardsley et al.
2013, Jensen et al. 2013, Pober et al. 2014 etc.),

that the EoR 21-cm signal is purely Gaussian random variable

How good is this assumption?

lonized bubbles introduce non-Gaussianity
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Figure 1. A section through one of the simulated redshift space
H Ibrightness temperature maps for gy, = 1.0 (left) which 1s largely a
Gaussian random field, and x5 ; = 0.5 (right) which has considerable non-
Gaussiamity due to the discrete 1onized bubbles visible in the image. The
redshift space distortion 1s with respect to a distant observer located along
the horizontal axis.
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Simulating the 21-cm maps

Simulating the 21-cm maps

It i1s not well established that how mass averaged neutral
fraction ixy; varies with the redshift z?

We have fixed the redshift z = 8 and considered different
values of xy;

For each value of x,;, we have simulated 21 statistically
Independent realizations of the reionization map




Simulating the 21-cm maps N-body, FoF and Reion

N-body Simulation: particle-mesh parallelized code,
Box has(150.08Mpc)3comoving volume,
Mass resolution (M,q,+) = 7.304 x 10’h™'M,

Identifying Halos: Friends-of-Friends (FoF) algorithm,
linking length 0.2 times the mean inter-particle separation,

require a halo to have at least 10 particles

Generating the Ionization map: homogeneous
recombination scheme (Choudhury et al. 2009), HI distribution
was mapped to redshift space (Majumdar et al. 2013)




Results SNR

Gaussian random field: signal to noise ratio to follow SNR = P, (k) /6P, (k) = /Ny
k (Mpc—1)
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Results Fitting formula for the SNR

Fitting formula for the SNR

s =L 1+ o]

Where the parameter A quantifies the deviation from the
Gaussian prediction in the low SNR regime

The deviations from the Gaussian predictions seen at

large SNR increase (i.e. [SNR]; decrease) as reionization
proceeds.




Results Dependence on k

Used a least-square fit to obtained the best fit A and [SNR];




Results Modelling the SNR

Modelling the SNR

The quantity we are dealing Is the binned power spectrum
P,(k) = (NxV)~ ZTb(a)Tb( —a)

The bin averaged power spectrum
(Po(k)) = Po(k) = (Nk)™" Z Py(a)

and, the variance of power spectrum
(8P (K)]") = [6Po(K)]" = (Nk)‘P_b?(k)

where PZ(k) and T,(k, k) are the square of the power
spectrum and the trispectrum respectively




Results Modelling the SNR

Modelling the SNR

The SNR = P,(k)/[6P»(k)] can be cast in the from of our
fitting formula 1.e.

v Nk N —0-5
Sih= [l+(A[SNR]z)2]

provided we identify

Py’ (k)

A=\ B0 and [SNR]; =




Results Volume dependence

:EH I =0.3

(150Mpc)3
(215Mpc)?




Conclusions

Conclusions

Two components, one a Gaussian random field and
another a non-Gaussian component from the discrete
lonized bubbles.

The Gaussian component In different Fourier modes are
Independent

The non-Gaussian components however are correlated this can
be quantified through bispectrum (Bharadwaj & Panday,
2005), Trispectrum (Mondal et al. 2015) etc.

The contribution to SNR = P, (k)/5P,(k)from the Gaussian
component scale as /N, , whereas the non-Gaussian
contribution remains fixed even if Ny, is increased.




Conclusions

For a fixed volume V , it Is not possible to increase the
SNR beyond [SNR];

[SNRY]; is proportional to +/V , and it is possible to achieve
a high SNR by Increasing the volume.

The non-Gaussian effect could play an important role in
the error predictions for the EoR 21-cm power spectrum




Thank you
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