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Wayout

Super-fast accelerated expansion at the beginning =⇒ Inflation



Dynamics? −→ Scalar field

EM tensor components ρφ = 1
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EM tensor components ρφ = 1
2 φ̇

2 + V (φ) ; pφ = 1
2 φ̇

2 − V (φ)
Governing Equations

H2 = 1
3M2

P

[

1
2 φ̇

2 + V (φ)
]

φ̈+ 3Hφ̇ + V ′(φ) = 0

Employ slow roll condition

φ̇2 << V (φ) ; |φ̈| << 3H|φ̇|,V ′(φ)

Slow roll parameters ǫV =
M2

P

2

[

V
′

V

]2
≪ 1

ηV = M2
P

[

V
′′

V

]

≪ 1

For sufficient inflation N = ln af
ai

≈ − 1
M2

P

∫ φf

φi

dφ√
2ǫV

≈ 56− 70

Solves first 3 puzzles at a single go.



Structure formation? −→ Perturbations

Quantum fluctuations of inflaton are transformed to classical
perturbations

Perturbations in the metric
⇓

δGµν = 8πGδTµν

ւ ↓ ց
Scalar perturbation Vector perturbation Tensor perturbation

⇓ ⇓
Matter Gravitational waves

Solves Puzzle No.4



Structure formation? −→ Perturbations

Quantum fluctuations of inflaton are transformed to classical
perturbations

Perturbations in the metric
⇓

δGµν = 8πGδTµν

ւ ↓ ց
Scalar perturbation Vector perturbation Tensor perturbation

⇓ ⇓
Matter Gravitational waves

Solves Puzzle No.4

First impression: Too good to be true!!



Inflationary predictions

Observable Scalar modes Tensor modes
parameters

Power spectrum PR(k) =
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Tensor to scalar ratio r = PT |∗
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Spectral index nS = 1 + d lnPR (k)

d ln k |∗ nT = d lnPR(k)
d ln k |∗

Running of S.I. αS = dns
d ln k |∗ αT = dns

d ln k |∗

∗ ⇒ k = aH

+ Consistency relation r = 16ǫ = −8nT

more or less generic for

slow roll

single scalar, canonical, minimally coupled

cs ≈ 1
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Perturbations generate specific peaks in CMB ⇒ Give Ω
′s

Spatially flat universe ⇒ Ωtot ≈ 1± 10−4

Adiabatic perturbations ⇒ all species share a common
perturbation

Gaussian perturbations ⇒ stochastic properties completely
determined by spectrum
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Perturbations generate specific peaks in CMB ⇒ Give Ω
′s

Spatially flat universe ⇒ Ωtot ≈ 1± 10−4

Adiabatic perturbations ⇒ all species share a common
perturbation

Gaussian perturbations ⇒ stochastic properties completely
determined by spectrum

Scalar modes dominant. PR(k) ≃ PR(k∗)(
k
k∗
)ns−1

PR(k∗) ∝ V (φ)
24π2ǫV

⇒ small initial fluctuations

(ns − 1) = small ⇒ nearly scale invariant power spectrum
(ns − 1) 6= 0 ⇒ perturbations originated from dynamics of
scalar field

Generic spectrum PR(k) ≃ PR(k∗)(
k
k∗
)ns−1+n′s ln(k/ks )

n′s 6= 0 ⇒ deviation from power law



Inflationary predictions

Tensor modes would be small but bear strong physical
significance.
A small fraction of CMB photons get polarized due to
quadrupole anisotropies. ⇒ 2 polarization modes (E & B)

B modes → Gravitational waves + NG + Lensing...

Detection of tensor modes have direct reflection on energy
scale of inflation (hence on fundamental physics)



Inflationary predictions

Tensor modes would be small but bear strong physical
significance.
A small fraction of CMB photons get polarized due to
quadrupole anisotropies. ⇒ 2 polarization modes (E & B)

B modes → Gravitational waves + NG + Lensing...

Detection of tensor modes have direct reflection on energy
scale of inflation (hence on fundamental physics)

Most of these predictions can be violated with more complicated
models



The CMB sky

Background temperature T0 = 2.725K at all directions
⇒ The Universe is homogeneous and isotropic at largest scale
How many parameters to describe the Universe? −→ 6 (or 7?)
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Fluctuations : −200µK < ∆T < 200µK
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All about CMB temperature

Background : T0 = 2.725K −→ Blackbody spectrum
Fluctuations : −200µK < ∆T < 200µK

∆Trms ∼ 70µK
∆TpE ∼ 5µK
∆TpB ∼ 10− 100nK

How to decode information?

Temperature anisotropy T + two polarization modes E & B
⇒ Four CMB spectra: CTT

l ,CEE
l ,CBB

l ,CTE
l

Parity violation/systematics ⇒ Two more spectra: CTB
l ,CEB

l



∆T (n) =
∑

almYlm(n) ⇒ 2-point correlation fn.
Cl =

1
2l+1

∑ |alm|2

Cl =
∫

dk
k
PR(k)T

2
l (k)

Peak positions, heights and ratios give cosmological parameters ⇒
imprints of both early universe and late universe



Cosmological parameters from Cl

Fundamental/ fit parameters
Ωbh

2 = baryonic matter density
Ωch

2 = dark matter density
ΩX = dark energy density
PR = primordial scalar power spectrum
ns = scalar spectral index
τ = optical depth
r = tensor-to-scalar ratio

Altogether 6 (or 7 if r 6= 0)



Cosmological parameters from Cl

Fundamental/ fit parameters
Ωbh

2 = baryonic matter density
Ωch

2 = dark matter density
ΩX = dark energy density
PR = primordial scalar power spectrum
ns = scalar spectral index
τ = optical depth
r = tensor-to-scalar ratio

Altogether 6 (or 7 if r 6= 0)

Derived parameters
t0, H0, Ωb, Ωc , Ωm, Ωk , Ωtot, σ8, zeq, zreion...



Parameters WMAP 9 Planck 2013

PR (2.464 ± 0.072) × 10−9 (2.196+0.051
−0.060)× 10−9

ns 0.9606 ± 0.008 0.9603 ± 0.0073

n′s −0.023 ± 0.001 −0.013 ± 0.009

r < 0.13 < 0.11

Ωb 0.04628 ± 0.00093

Ωc 0.2402+0.0088
−0.0087 Ωb +Ωc = 0.315 ± 0.017

ΩX 0.7135+0.0095
−0.0096 0.685+0.018

−0.016

τ 0.088 ± 0.015 0.089+0.012
−0.014

H0 69.32 ± 0.80 km/s/Mpc 67.3 ± 1.2 km/s/Mpc

t0 13.772 ± 0.059 Gyr 13.817 ± 0.048 Gyr



How sensitive to parameters the CMB TT plot is?



Planck 2013 highlights



Inflationary parameters Planck 2013 results

PR (2.196+0.051
−0.060)× 10−9

ns 0.9603 ± 0.0073

n′s −0.013 ± 0.009

r < 0.11

nT > −0.048 at 95%CL

100Ωk −0.05+0.65
−0.66

f locNL 2.7 ± 5.8

f
eq
NL −42± 75

f orthoNL −25± 39
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More matter, less energy (slightly altered in Planck 2014?)
Little bit older universe (13.771 Gyr −→ 13.817 Gyr)
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Test of predictions post-Planck 2013

Boring universe, 6 parameters suffice
More matter, less energy (slightly altered in Planck 2014?)
Little bit older universe (13.771 Gyr −→ 13.817 Gyr)

Inflation is non-trivial but non-exotic

ns 6= 1 at 5σ ⇒ inflation from dynamical field, HZ ruled out

Better results at high l ⇒ Peaks direct evidence of BAO

r < 0.11 ⇒ GW yet undetected but better constrained

No conclusion on non-Gaussianity ⇒ cannot say if inflation is
driven by single-field or multi-field

Outliners are still there ⇒ physical origin?
Large scale anomalies : hemispherical asymmetry?
Big cold spot ⇒ superstructure?



Have we “seen” inflation in the sky?

No!!

Can be claimed only when we detect

r conclusively (BICEP2: r ≈ 0.2 or dust??)

nT independently and verify consistency relation r = −8nT for

* slow roll
* single field, canonical, minimally coupled
* cs ≈ 1

αT (or confirm it is zero)

fNL for single field vs multi field debate

... but of course we are zeroing in!



What can we say about the inflationary models?

Chaotic + minimal copuling P.A.R.Ade et.al., 1303.5082

Tightly constrained. Different cleaning: Spergel et.al., PRD:2015

φ2 marginally consistent.



Chaotic + non-minimal coupling Bezrukov et.al., JHEP:2013

Allowed, even φ4 for ξ/2 > 10−3

but issues, e.g. candidate inflaton? Higgs?



Polynomial (SUGRA?) Kallos, Linde, JCAP: 2010

V (φ) = m2φ2

2 (1− aφ+ a2bφ2)2

Allowed, with b = 0.34, a = 0, 0.03, 0.05, 0.1, 0.13

but issues, e.g. SUGRA origin is debatable



MSSM(inflection point) Choudhury, Majumdar, SP, JCAP:2013

V (φ) = α+ β(φ− φ0) + γ(φ− φ0)
3 + κ(φ− φ0)

4 + · · ·

Planck+WP9+BAO: Blue: ΛCDM+r(αS), Red: ΛCDM+r + αS

Allowed, better fit for low l



Starobinsky model Starobinsky, Sov. Astron. Lett: 1983

L =
√−g

(

R
2 + R2

12M2

)

, M ≪ Mp

can be reduced to canonical gravity + scalar field by field
redefinition and metric transformation

N ∼ 60 ⇒ nS ∼ 0.967, r ∼ 0.003
N ∼ 60 ⇒ nS ∼ 0.964, r ∼ 0.004.

Allowed

Many models, except a few with very high r , are still allowed.



Two open questions

All models lead to same predictions matching with Planck.
Can they be incorporated into a common platform?
Superconformal theory??
Universal attractor?? Linde, 1402.0526



Two open questions

All models lead to same predictions matching with Planck.
Can they be incorporated into a common platform?
Superconformal theory??
Universal attractor?? Linde, 1402.0526

Among all allowed models, which ones are more probable?



Most probable models

Model selection algorithm Liddle et.al., astro-ph/0608184

Consider 2 models

M1 with one model parameter θ

M2 with two model parameters α and β

How do they fair against some data D? ⇒ maximum likelihood

L1 = L1,max exp
−χ2(θ)/2 ; L2 = L2,max exp

−χ2(α,β)/2

But this does not distinguish between “complexity” of the models.



Most probable models

Model selection algorithm Liddle et.al., astro-ph/0608184

Consider 2 models

M1 with one model parameter θ

M2 with two model parameters α and β

How do they fair against some data D? ⇒ maximum likelihood

L1 = L1,max exp
−χ2(θ)/2 ; L2 = L2,max exp

−χ2(α,β)/2

But this does not distinguish between “complexity” of the models.

Occam’s razor : penalize complex models.
Best models are those who can make best compromise between
simplicity and quality of fits

Calculate Bayesian evidence
E1 =

∫

L1(D/θ)π(θ)dθ ; E2 =
∫

L2(D/α, β)π(α, β)dαdβ
Prior distributions satisfy

∫

π(θ)dθ = 1;
∫

π(α, β)dαdβ = 1

Lower evidence ⇒ More probable : Jeffrey’s scale



∼ 26% models are most probable. J.Martin et.al., JCAP:2014
+ Bayesian complexity ⇒∼ 9%. Preferred potential: pleatue type.
But it all depends on how reliable Bayesian evidence calculation is!



Take home message

Have we “seen” inflation in the sky?

No!!

... but of course we are zeroing in!



Take home message

Have we “seen” inflation in the sky?

No!!

... but of course we are zeroing in!

The point is not to pocket the truth but to chase it – Elio Vittorini



Some more questions

Large scale anomalies

Lensing

Non-Gaussianity



Large scale anomalies



Large scale anomalies

Modifications to inflation? (Carroll, PRD:2008)

Earlier universe preceding Big Bang? (Efstathiou, )

Undiscovered source in solar system? (Yoho, PRD:2011)

A nice review by Huterer, 1004.5602



Lensing

Effects of lensing
• Broadening of peaks
• Non-Gaussianity
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Lensing

Effects of lensing
• Broadening of peaks
• Non-Gaussianity

Why delensing?
• Better estimate of parameters
• B-modes: can remove degenarcy

To do
• Propose delensing techniques
• Wait for Planck polorization & CMBPol data



Delensing using matrix inversion technique
Pal, Padmanabhan, SP, MNRAS:2014
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Non-Gaussianity

Perturbations mostly Gaussian, described by 2-point correlation fn.
If (small) non-Gaussianities are present −→ reflected via B modes
3- and 4-point correlation fn. ⇒ bispectrum fNL & trispectrum
gNL, τNL



Non-Gaussianity

Perturbations mostly Gaussian, described by 2-point correlation fn.
If (small) non-Gaussianities are present −→ reflected via B modes
3- and 4-point correlation fn. ⇒ bispectrum fNL & trispectrum
gNL, τNL

Why important?

Maldacena limit ⇒ single field (|fNL| < 1) vs multifield
(|fNL| > 5)

B modes = GW + NG + lensing ⇒ Need to separate out NG
for correct estimate of GW

Suyama-Yamaguchi consistency relation between fNL & τNL
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