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Pillars of Modern Physics

@ Quantum Field Theory is an extremely well-tested framework
— constructed in flat Minkowski spacetime
— unique vacuum state

o LHC validates it up to ~ 10*GeV
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@ What about GR?
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Introduction

Quantum F\dd Theory

Hand-full of General Relativity

Schwarzschild geometry around
the Earth :

ds® = — (1 — =) dt? + dI?

rs = 2GM ~ 9 mm

raps ~ 26600 km

@ GPS accuracy of say 6m on ground requires time accuracy of
20 nano-seconds.

@ GPS device will give wrong reading in about 2 minutes if time
dilation effect from GR is not included. g
7
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Introduction

Quantum Field Theory

Quantum Gravity?

@ Gravitation: Is it classical or quantum?

“... Because of the intra-atomic movement of electrons, the atom
must radiate not only electromagnetic but also gravitational energy,
if only in minute amounts. Since, in reality, this cannot be the case
in nature, then it appears that the quantum theory must modify not
only Maxwell’s electrodynamics but also the new theory of
gravitation.”  — Albert Einstein (1916, p. 696).

@ Quantum Gravity: String theory, Loop gravity, 777
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of Planck Scale Physics

@ Scale of Quantum Gravity ~ \/% ~ 10" GeV (Planck mass)

Direct observations in Lab is too far!! (Energy scale at LHC

~ 10%GeV)

@ "QFT in Curved Spacetime” may be used to probe of some
aspect of Planck scale physics!

— Cosmological inflationary power spectrum
— Hawking radiation
— Unruh effect
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Accelerating Observer
Unruh Effect Rindler Spacetime

Unruh Temg

Unruh Effect R

Uniformly Accelerating Observer

@ Unruh effect: uniformly accelerated observer feels a
black-body radiation in vacuum state of Minkowski spacetime
whereas an inertial observer sees it empty.

Stephen Fulling (1973), Paul Davies (1975), W. G. Unruh (1976)

@ Position 4-vector of the accelerating observer z*:

dxt du#
ut = —; ad' = —; a2:aua“
ds ds
where s is proper time and acceleration parameter a is
constant.
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Unruh Temp

Unruh Effect R

Rindler Spacetime

o Inertial (Minkowski) metric (in 1+1 dim):
ds* = —dt* + da?

@ Metric as seen by an uniformly accelerating observer, known
as Rindler metric (conformally flat)

ds® = €* (—dr® + d¢?)
@ The coordinates of the Minkowski observer and Rindler

observer are related to each other as

ag ag
e | e
t = —sinhar, x = —coshar. Cer.
a a )

/4
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Unruh Temperature

Unruh Effect Revisited

Rindler Spacetime

Rindler Wedges:

x > |t| (Right Wedge)

—x > [t| (Left Wedge)

()
1ISER KOLKATA

Golam M Hossain 8/28



A ing Observer
Unruh Effect Ri Spacetime

Unruh Temperature

Unruh Effect Revisited

Light-cone Mode Expansion

e Mode expansion in Minkowski (v =t — z,v =1t + x)

(ZB N o0 dw |:e
0o Virw

where [&w,&L/} = 6(w —w') and vacuum state a,|0") =0

T +e—iwvd_w _i_eiwvd]:w]
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Light-cone Mode Expansion

e Mode expansion in Minkowski (v =t — z,v =1t + x)

(ZB:  dw {e—iwud + eiwudT + e iwvg + eiwvdT ]
0 \/m w “ ¥ v
where [d,,, &L/} = 6(w —w') and vacuum state a,,|0M) =0

e Similarly for Rindler spacetime (u =7 —§,0 =7 +¢)

2 w0 dw ) ioujt —iwv7, iwv T
o= ; \/m[e by +e"“"by + e b_g+e b_@]

where [I;@,l;;,] = §(w — @') and vacuum state b, |07) = 0
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Unruh Temperature

Unruh Effect Revisited

Bogoliubov Transformations

@ Transformations between creation and annihilation operators
of Minkowski and Rindler observers

/\7 . S NN _ A'i'
by = /0 dw [a(w,w)aw + B(w,w)a,

where coefficients a(w, ), B(w, ) are known as Bogoliubov
coefficients
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Accelerating Observer
Unruh Effect Rindler Spacetime

Unruh Temperature

Unruh Effect Revisited

Unruh Temperature

@ Expectation value of the number operator in the Minkowski
vacuum as seen by a Rindler observer is

1

V. — (OM|NR|IGMy
N = (0M|NEJ0M) =

, (@=k])

@ Recall number density in black-body radiation of Bosons

1

Ne = ohw/reT _ |

@ Unruh temperature
ha

T =
2mcKp Fg Iy
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Unruh Temperature

Unruh Effect Revisited

Planck Scale Physics

@ Where is Planck scale physics here?

@ Bogoliubov Transformation
by = / dw [oz(w,cv)&w + B(w,@)a],
0

— depends on all modes of frequency w between 0 to co!!

@ In the context of Hawking radiation, it was shown
— effects of degrees of freedom at ultra-high energies/momenta
could lead to strong deviation from Hawking's results
— could give non-trivial information about Planckian physics.
W. G. Unruh, Ralf Schutzhold (2005) g >
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Free Fields as Harmonic Oscillators

@ Hamiltonian for a massless scalar field

= [ da [\f V9109,6%,0| {6(@), n()} = ba—a')
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Unruh Effect

Unruh Effect ReV|5|ted

Free Fields as Harmonic Oscillators

@ Hamiltonian for a massless scalar field

Ho= [ [\f 9,610 {6). ()} = o),

e Fourier modes (in a finite spatial volume V)

¢(t x \/‘Z(ﬁ zkx (t QJ foﬂk ek
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Accelerating Ob
Unruh Effect Rindler Space

Unruh Temperature

Unruh Effect Revisited

Free Fields as Harmonic Oscillators

@ Hamiltonian for a massless scalar field

Ho= [ [ff 9,610 {6). ()} = o),

e Fourier modes (in a finite spatial volume V)

1 =~ ik-x
olt,2) \ﬁ2¢ 0 wlta) = 2 3 VaR)e"

@ Hamiltonian density for Fourier modes

2
us 1
Hy=> Hy; Ho=|—=4+ k2| ; = S
P Z K Hy [2+2 | 5 {d, Mo} = ik

keK S,
— free scalar fields ~ decoupled harmonic oscillators HSER KOLKATA
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Accelerating Observer
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Unruh Temperature

Unruh Effect Revisited

Bogoliubov Transformations

e Similarly, for Rindler spacetime: {¢,, T} = ./

@ Bogoliubov transformation

b= G F(k,—r)+ > b F(-k —r),

k>0 k>0
T = Z?TkFl (k,—k) + Z T F1(=k, —k)
k>0 k>0

restricted at 7 = ¢t = 0 hyper-surface

@ Bogoliubov coefficients

Fk,k) = /dfeik'ﬁi'{'g , Fik,k) = /d§ e eherting p%«’;_
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Unruh Effect
Unruh Temper.
Unruh Effect Revisited

Number Operator

@ One may define number density operator for Unruh particles
of positive frequency w = x > 0 as follows

o= /)LQLH - hm ﬁ,{/ |K/‘71 .
a—0
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Accelerating Observer
Unruh Effect

Unruh Temg re

Unruh Effect Revisited

Number Operator

@ One may define number density operator for Unruh particles
of positive frequency w = x > 0 as follows

= ’H,{—lim’lfln} k|7t
a—0

@ Expectation value of the Rindler Hamiltonian operator in the
Minkowski vacuum

N 2rk/a 41 ) 2E0
MRy = BE T ”(k)

o 2 _ Ter
2e?m/a —1=ka \ k
where ground state energy E? = <0M|I§lﬁ‘/f|OM) g(
U/
@ Planck scale physics does play a role! WSER KOLKATA
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Expectation value of Number Operator

@ Vacuum expectation value of the operator

1-—

. _n® o T

Nz = (0 |N 10%) = T
where E0 = (0°|H,|0°) and 7, = lims_,o~? with

1 i ET = 2E1(()r
€Epr =
C(1+28) 2= 7195 7 = g

1—7;55

e In Fock quantization, #|ni) = Elni) with

1
Eﬁ=<n+2>lk pe=1; 79=0 2
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[SESTRVETELIS

Inner Product

Momentum Operator

Energy Spectrum

Poly Vodified Unruh Effect

Polymer Quantization

Planck Scale Theories!

String Theory:

— Fundamental building blocks of our universe are extended
objects such as strings, branes

— aims to unify the forces of nature

Loop Quantum Gravity:

— a non-perturbative approach to quantum gravity

— uses a background-independent quantization method known as
polymer quantization or loop quantization

= 77 FQ
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Basic Variables

Inner Product

Momentum Operator

Energy Spectrum

Polymer Modified Unruh Effect

Polymer Quantization

Basic Variables

Simple Harmonic Oscillator

@ Hamiltonian and Poisson bracket

2

1
H:§7m+§mw2x2 , {z,p}=1; t={z,H}
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Basic Variables

Simple Harmonic Oscillator

@ Hamiltonian and Poisson bracket

2

1
Hszm—i—imwzﬁ , {z,p}=1; t={z,H}

@ Schrodinger quantization:

{z.p} =1 = [&p]=ih

Fg Iy
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Basic Variables

Simple Harmonic Oscillator

@ Hamiltonian and Poisson bracket

2

1
Hszm—i—imwzﬁ , {z,p}=1; t={z,H}

@ Schrodinger quantization:

{z.p} =1 = [&p]=ih

@ Loop (polymer) quantization: Uy = ¢"P
{2, U\} =iXUy  —  [&,Uy] = —hAU, g :
>
A is a dimension-full parameter. TISER KOLKATA
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Polymer Quantization

Elementary Operators

o The basis states: 1, (p) = e*? (u € R)

Ashtekar, Fairhurst, Willis (2002); Halvorson (2001)
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Elementary Operators

o The basis states: 1, (p) = e*? (u € R)

Ashtekar, Fairhurst, Willis (2002); Halvorson (2001)

@ Basic actions:

. L0
Y, = zha—pe HP = —Rhyap,,

R .
Uiy = e PP = 4,1 5
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Basic Variables

Inner Product

Momentum Operator

Energy Spectrum

Polymer Modified Unruh Effect

Polymer Quantization

Elementary Operators

o The basis states: 1, (p) = e*? (u € R)

Ashtekar, Fairhurst, Willis (2002); Halvorson (2001)

@ Basic actions:

. L0
Y, = zha—pe HP = —Rhyap,,

R N
Uiy = e PP = 4,1 5
@ In Dirac notation:

Blu) = —hplp) 5 Uxlp) = |n+X)
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Inner Product

@ Inner product:

1 T
(¢M/’¢M) = lim / dpw:/ﬂ)#

T—o0 2T -T

, .
<:U’ |/’L> = O;L’,p

— rhs is the Kronecker delta

— even position eigenstates are normalizable.

— position eigenvalues are “discrete”
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Polymer Quantization

Momentum Operator

How to define momentum operator?

One possible way to define p could be to use classical relation
Uy = e as
. [dU,
p=—1 N
A=0
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Momentum Operator

How to define momentum operator?

One possible way to define p could be to use classical relation
Uy = e as
. [dU,
p=—1 N
A=0

Inner product (u'|p) = 0, implies

li Ty = li A) =
lim (p[Un|p) = lim (ulp +X) =0
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Polymer Quantization

Momentum Operator

How to define momentum operator?

One possible way to define p could be to use classical relation
Uy = e as
. [dU,
p=—1 N
A=0

Inner product (u'|p) = 0, implies

i (a[ U |p1) = Tim (ul+ X) = 0 # (| Un=olp) = 1
—0 A—0

()
1ISER KOLKATA

Golam M Hossain 21/28



[SESTRVETELIS

Inner Product

Momentum Operator

Energy Spectrum

Polymer Modified Unruh Effect

Polymer Quantization

Momentum Operator

How to define momentum operator?

One possible way to define p could be to use classical relation
Uy = e as
R [ AU
= —1 —_—
P X
A=0
Inner product (u'|p) = 0, implies
lim (p|Ux ) = lim (plp+ A) = 0 # (u|Un=olp) = 1
A—0 A—0

— P does not exist
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Actions of elementary operators

P
%
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Inner Product
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Polymer Modified Unruh Effect

Polymer Quantization

Actions of elementary operators

Polymer Schrodinger
Quantization Quantization

N
Uy x> = |x+ A>

(\TX +A>
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Polymer Quantization

Polymer Momentum Operator

e Using the classical relation Uy = €'* one can define

1 t
AT W (UA* - UA*)

@ In the limit Ay, — 0, px — p

@ In polymer quantization, this limit doesn’t exist. So A, is
taken to be a small but finite scale
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Momentum Operator
Energy Spectrum

Polymer Modified Unruh Effect

Energy Spectrum

Energy eigenvalue equation: Iﬁ[} = Fkvy

energy B, /w

g =mw? (oscillator) or g = |k|/M, (QFT)

Golam M Hossain

Hossain, Husain, Seahra (2010)

For small g limit

EQn ~ E2n+l

1
=|(n+5) -0«
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Unruh effect in Polymer quantization

@ In polymer quantization

o

€r
Z T1+25 = C’F*(]‘ + 26)

r=1

where 7, = (L/1,)(2 — V/2) /27, v1 = 2(2 + V?2),
vy =2(2 —2)

o Truncated zeta function: ¢, (s) =Y .= 1%,

B ¢r, (20) n rC(2 + 26, 14)
V1Tx 2

9

o Hurwitz zeta function: ((s,ry) = > 2 7%
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Polymer Quantization

Expectation value of Number Operator

e Zeta function identity: lim,_,o[s ((1+s)] =1

00
€r

lim
5—0  ((1+20) ZT1+25 0

@ Vacuum expectation value:

Nz = (0°|N5[09) =0
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Polymer Quantization

Expectation value of Number Operator

e Zeta function identity: lim,_,o[s ((1+s)] =1

00
€r

lim
5—0  ((1+20) ZT1+25 0

@ Vacuum expectation value:
N = (09|N4|09) =0,

e Contrary to Fock quantization: E' = (n+ 3)[k|,
e =2E) /|| =1

o0

. 1 €r N, 1
i q¢! +25)Zr1+26 Lo No = e =1 Egﬂ
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Discussions

Two-point function and KMS Condition

e Two-point function: G(7) = (0|¢(x(7), t(7))p(x(0),(0))|0)
@ KMS condition ( “periodicity with a twist”) for Unruh effect

G(=7)=G(r—if) ; kT =1/p
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Two-point function and KMS Condition

e Two-point function: G(7) = (0|¢(x(7), t(7))p(x(0),(0))|0)
@ KMS condition ( “periodicity with a twist”) for Unruh effect

G(=7)=G(r—if) ; kT =1/p

@ What about two-point function in polymer quantization?
Rovelli, arXiv:1412.7827v1
@ With leading order perturbative correction in I,:

2
G g [1 6522 (14 28]

As? As? As?
e Rindler trajectory: At =t(7) — t(0) = sinh(a7)/a,
Az = (cosh(at) —1)/a g
As® = 2(1 — cosh(ar))/a? i,

Golam M Hossain 27/28



KMS Condition
Discussions
Discussions

Discussions

@ In polymer quantization, Unruh effect appears to be absent!

@ Unruh effect can be used as a potential probe of Planck scale
physics

@ Several experimental proposals have been made to verify
Unruh effect in laboratory!

Schutzhold, Schaller, Habs, PRL (2006,2008); Aspachs, Adesso, Fuentes, PRL (2010)
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Discussions

@ In polymer quantization, Unruh effect appears to be absent!

@ Unruh effect can be used as a potential probe of Planck scale
physics

@ Several experimental proposals have been made to verify
Unruh effect in laboratory!

Schutzhold, Schaller, Habs, PRL (2006,2008); Aspachs, Adesso, Fuentes, PRL (2010)

Thank you
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