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GGravitational waves

® The existence of gravitational waves (GWs) is one
of the most intriguing predictions of the General
Theory of Relativity.

® GWs are freely propagating oscillations in the

geometry of spacetime — ripples in the fabric of
spacetime.
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Observational evidence of gravitational waves

® Adirect detection of GWs is yet to be made. But
indirect evidence comes from the observations
of binary pulsars.

® Binary neutron stars lose their orbital energy by
GW emission and starts to “inspiral”.

® 36 years of radio observations of the binary
pulsar PSR B1913+16 — Decay of the orbital
period agrees precisely with GR prediction.
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® More binaries discovered later (including a
double pulsar) = further confirmation.
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Direct detection of gravitational waves

® When GWs pass through earth, they change the
geometry of the spacetime.

® These changes can be detected with the help of
laser interferometers.

Effect of GWs on a ring of test particles
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Direct detection of gravitational waves

® Experimental challenge Expected distortions are tiny!
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Direct detection of gravitational waves

® A worldwide network of ground-based detectors has started an exciting search for GWs,

LIGO Observatories in Hanford and Livingston, USA



| aser Interferometric GW detectors

® |nitial LIGO detectors achieved
their design sensitivity in 2007.
Advanced LIGO detectors will
start operating in 2015.
Expected to achieve design
sensitivity by 2018,
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GW astronomy requires a worldwide network of observatories
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Sound level (dB)

® |nterferometric GW detectors are nearly omnidirectional antennas. Sky-localization of the
source is achieved by combining data from multiple, geographically separated detectors.
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GW astronomy requires a worldwide network of observatories
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GW astronomy requires a worldwide network of observatories
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LIGO-India

http://www.gw-indigo.org/ligo-india

® (Ongoing proposal to re-locate the third
Advanced LIGO detector to India.

LIGO to provide interferometer
components (laser, suspensions, optics,
control systems, software). India to
provide site, vacuum system,
infrastructure and human resources.

® Will be jointly operated by the Indian nodal
institutions (IUCAA, IPR, RRCAT) and LIGO
Lab (USA).

® US National Science Board approved the
change in scope of the Adv LIGO project.
Pending approval from the Indian
government as a national mega project.
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LIGO-India

o = significant improvement in angular resolution, sky coverage & duty cycle of the network.

cg ?Dﬂﬁoﬁ

[Fairhurst (2012)]

sky localization: imperative for multi-messenger astronomy
angular resolution oc baseline of the network
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Expected detection rates

GW detectors are amplitude detectors (unlike telescopes).

10x improvement in the sensitivity = 1000x increase in the event rates!

[Abadie et al (2010)]

DETECTORS SOURCES EXPECTED DETECTION
RATE
Initial NS-NS Binaries | per 50 years (mean)
detectors NS-BH Binaries | per 250 years (mean)
BH-BH Binaries | per 140 years (mean)
Advanced NS-NS Binaries 0.4 — 400 per year
detectors NS-BH Binaries 0.2 — 200 per year

BH-BH Binaries

0.4 — 1000 per year

Note: Large uncertainties in the astrophysical estimates. However,

even the most pessimistic estimates suggest that detection is within reach!
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When do we expect the first detections”?

e Difficult to make accurate predictions due to the
uncertainties in the astrophysical event rates and

challenges in the commissioning. 107 S
B Early (2015, 40 — 80 Mpc)
) . ) Mid (201617, 80 — 120 Mpc) |
® Plausible observing scenarios o I Late (2017-18, 120 — 170 Mpc)|
'.I\, Il Design (2019, 200 Mpc)
S . BNS-optimized (215 Mpc)
Epoch Plausible BNS % BNS localized g
detections within 5 [20] deg =
2015 0.0004 — 3 E
2016-17 0.006 — 20 B 5
2017-18 0.04 — 100 | —2[10—12] 210
2019+ 0.2— 200 3—8[8—28]
2022+ (India) .4 — 400 17 [48] @
: - 107 RN EEEE BRI RN
[Aasi et al, arXiv:1304.0670] o' 0 10

frequency (Hz)

17



Physics, Astrophysics and Cosmology from GW observations
What can we expect in the next 5-10 years?

GWs and EMWVs carry qualitatively different information
GWs are produced by coherent bulk motions of massive sources.
EMWs are produced by incoherent motions of a large number of small sources.



GW astronomy: Sources and science

Core-collapse and supernova
Coalescing compact binaries




Extracting information from GW observations

® For sources such as CBCs, spinning neutron stars, etc., expected signals are well-modelled in GR.

Weak signals buried in the noise can be detected by cross-correlating the data with “banks” of
(millions of) theoretical templates.

0 = max) [d* ﬁ()\)]

A da’ra}ﬂ 7\ & source
SNR signal parameters
template
~ Signal template Data

Cross-correlation
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Extracting information from GW observations

® Posterior distribution of the source S
parameters can be estimated by pgf;:;ﬂ::g:'i"
Bayesian inference. N
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Astrophysics using GW olbservations

Even with no

detections! 103

Rate estimates (Mpc™3 yr™!)
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[Abadie et al (2012)]

Predicted rates
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Astrophysics using GW olbservations

® (Constrain models of compact binary

formation & evolution Even with no [Abadie et al (2012)]
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Astrophysics using GW olbservations

® First detection of BH-BH and NS-BH
binaries A new population of
astronomical sources. Great potential for
tests of GR, astrophysics & cosmology.

® First direct measurements of BH
masses and spins Sources are very well
understood (unlike in EM astronomy), GW
signal encodes direct information of the
masses & spins.

A M/M x 100

[Ajith & Bose (2009)]
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Astrophysics using GW olbservations

® Measuring the mass function of
reconstructed mass
black holes and neutron stars by function from 1 year of
combining multiple observations of Adv LIGO observation

. i
compact binary coalescences. 10 F—— Tl T

1 / 1 10
simulated mass M (Mo)
function [Messenger, Del Pozzo, Veitch, in Prep]
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Astrophysics using GW olbservations

O Short-hard GRBs [Metzger & Berger (2011)]

gamma-rays

are hypothesized to be powered by

compact-binary mergers. One unique S gl opticallR
coincident GRB-GW observation will shed N n
light on this. !

’ i
’
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{ c

20



Astrophysics using GW olbservations

O Short-hard GRBs [Metzger & Berger (2011)

are hypothesized to be powered by —~ b 1]
compact-binary mergers. One unique g 2510 19 o ]
— - o '/ 8“'
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Astrophysics using GW olbservations

BNS/NSBH inspiral
signals contain information of the NS EoS
(through tidal deformation).

Need “fairly loud events” (SNR = 16)

in Adv LIGO (expectation: ~5 BNS & 1
NSBH events per year).

[Damour et al (2012)]
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In the unshaded region, the tidal deformation can be

measured in Adv LIGO. 3G detectors will make
very accurate measurements.
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Astrophysics using GW olbservations

o BNS/NSBH inspiral [Lackey etal (2011)]
signals contain information of the NS EoS 02 : |
(through tidal deformation). _ A !

g 00} [
Merger/ring-down part expected to 0 / 5 NU’ |
have clearer signature. NR simulations ™% . s s N
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Tests of GR using GW olbservations

o Time-delay between GW

and EM (y-ray) signals from SGRBs can
constrain the speed of GWs [Will 1998].

distance to
the source

Vi
C D

c—v, CcAt

Va R

speed of GWs
(vg= c in GR)

observed time-difference
btwn the GW & EM
signals (after subtracting
the time-delay in
emission measurement
errors efc.)

[R. Adhikari, P Ajith ... (prep)]
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From the coincident GW+EM observation (At
= |sec) of one SGRB, powered by NSBH
merger (located at the horizon distance).
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Tests of GR using GW olbservations

® A bound on v,
implies a bound on the graviton-mass [Wil
1998].

Dispersion relation
212 _ 1 _ .2 A2
v,/ct =1 —-—m c"|E,
/ / 1
speed of GWs rest mass of

: the graviton
- GR 9
(Vg= ¢ in GR) (mg= 0 in GR)

energy of
the graviton

100 e === (= = = = = = =
o Solar system limit
o,
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S
—ET
I /
-2
=) 10 4
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to /
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o
3 107 /m1 = 1.4 M

[R. Adhikari, P Ajith ... (prep)]
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From the coincident GW+EM observation (At =
| sec) of one SGRB, powered by NSBH merger
(located at the horizon distance).



Tests of GR using GW olbservations

® A bound on v,
implies a bound on the graviton-mass [Wil
1998].

GW observations of CBCs can constrain
the mass of graviton without relying on
an EM counterpart.

hfew

212 _ 1 _ 2 A2
vg/c—l mgc/Eg

— GR

Massive graviton

A

-1000 -800

Different frequency components travel with
different speeds — characteristic deformation in
the observed signal!

-400
t/M




Tests of GR using GW observations

[Keppel & Ajith (2010)]

e A bound on v,
implies a bound on the graviton-mass [Wil
1998]. -
IUI.) E,,,,,I - TT=TTTTT] Y 532 pC
GW observations of CBCs can constrain : - ‘
the mass of graviton without relying on £
an EM counterpart. e (Un 3 {32 pe
< :
b i
S | J
E l()l.’{ = I\(l\'. IJI(;() — 0.3 pC
<2 R S
solar system bound
al PR e 0.03 pc

10° 10° 10°
Total Mass (M)

Expected bounds on the Compton wavelength of the
graviton from BBH observations by future detectors.

(d. = 1 Gpc)
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Early Universe Cosmology

[LIGO & Virgo Collaboration 2009

® Stochastic GW spectrum predicted by
std. inflationary cosmology is too low
to be detected by Advanced LIGO.
However, the upper limits will
constrain more exotic models.
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CMB and matter
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Energy density of gravitational radiation Qaw

| 1 |
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Frequency (Hz)

expected upper limit
from Adv LIGO
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Expansion history of the Universe

® (B(Cs are standard sirens Self

calibrating sources — cosmic
expansion rate. [Schutz (1986)]

2G network: modest

measurement of Ho. [Nissanke et
al (2013), Del Pozzo (2011)]

3G detectors: more interesting
measurements (comparable to
other dark energy missions).
[Zhao et al (2011)]

Note: very different systematics!

Measurement error in H0

From joint GW-EM observations
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Joint searches with HE neutrinos: Searching for the exotical

O |CeCube has detected Several high_ [lCGCUbe + LlGO-VlrgO CO”aborationS, 2014]
energy neutrinos -- believed to be of " i
astrophysical origin. 0ol o s b

o 2 0.8f
Several joint searches between LIGO- 2 o
Virgo and neutrino detectors & o6l '
(IceCube, ANTARES) performed in 8 o5} /,
g 4+ : : oo
the paSt' 3 o4 - ‘ GW-+v (observatlon)
. o e L(I?O.S_ : " oo ‘ GW+V(1O yr ) |
No detections. Expected joint 202 e (102 yr™)
detection rates for realistic sources 01 S RNE 2 W 88 - y
(GRBs, SGRs, etc.) small. e — N G L

However, there are may be unknown

unknowns! 160

Virgo

IceCube IC40

GW-+neutrino search




Summary

® First direct detection of GWs expected in the next few years by second-generation interferometric
detectors.

® Once detected, GW observations will open a new, unique window for astronomy. Complementing,
corroborating and perhaps challenging the information gained from EM/astroparticle observations.

o : Great opportunity for the Indian scientific community to be a major player in a research
frontier anticipating big discoveries!



Observational windows to the Universe

Radio (21 cm) Microwave (CMB) Infrared (9 um)
¥
o
J.Dickey/ Planck/
NASA SkyView ESA
Optical X-ray Gamma ray (GeV)

XMM-
Newton/
ESA

Axel
Mellinger

Fermi/LAT/
NASA/DOE

Equatorial




Advanced LIGO

fused silica
suspensions to
minimise the motion
of the test masses
due to thermal noise

40kg fused silica
polished to extreme
precision (< Inm) &
coated with ultra-
low loss coating

RS- ~ LoMw
full interferometer enclosed in < 1077 Torr

vacuum to minimize scattering due to gas

molecules

Fabry-Perot Cavity

A Input mirrors

Beam- z <

splitte 1.0MW

180 W
1

Nd:YAG laser Power Recycling
) = 1064nm Mirror

Fabry-Perot Cavity

Signal Recycling
Mirror

To Photodetector hydraulic external pre-isolator (active)

+ 4 |evel suspensions (passive) to
minimize seismic coupling
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pre-stabilized 180WV laser with
intensity stability 107%/+v/Hz &
frequency stability 1077 Hz/+/Hz.



