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Monte-Carlo model with effective Predictions for
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Diffractive factorisation concept
mylogo

Optical analogy
Reggeon theory

Lund cascade model
ˇ

Ingelman-Schlein model for hard scattering:

Assumes a pomeron flux factor fPp(xP) and that the
pomeron has a parton substructure f Pq,g(zP ≡ β,Q2)

Fitted to data. One set of structure functions fits both soft and
hard diffraction at HERA
Implemented in POMPYT, CASCADE, and PYTHIA8 MC
Goulianos: renormalized pomeron flux

Exclusive states in diffractive excitation 12 Gösta Gustafson Lund University
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✓   Diffractive PDFs are non-universal 
✓   They can not be exported to describe other hard diffractive processes (e.g. in pp) 
✓   We need to calculate the survival probability of the LRG’s which is process-dependent

In this paper, a more precise test of QCD factorisation for diffractive dijet production in DIS
and photoproduction is presented. Measurements of diffractive dijet cross sections are com-
pared with NLO QCD predictions based on recently published diffractive parton densities [3]
from H1. In addition, the dijet cross sections are also compared with two versions of the LO soft
colour interaction model. The data were collected with the H1 detector at HERA in the years
1996 and 1997. For photoproduction the integrated luminosity is increased by one order of mag-
nitude with respect to previous results. For DIS, the same data sample is used as in a previous
measurement [5]. Jets are defined using the inclusive kT cluster algorithm [23] with asymmet-
ric cuts on the jet transverse energies to facilitate comparisons with NLO predictions [24, 25].
Apart from the different ranges for the photon virtuality, the DIS and photoproduction measure-
ments are performed in the same kinematic range to allow the closest possible comparison of
the results.

2 Kinematics

The generic diffractive positron-proton interaction ep → eXY is illustrated in Figure 1. The
positron (4-momentum k) exchanges a photon (q) which interacts with the proton (P ). The
produced final state hadrons are, by definition, divided into the systems X and Y , separated
by the largest gap in the hadron rapidity distribution relative to the γ(∗)p collision axis in the
photon-proton centre-of-mass frame. The system Y lies in the outgoing proton beam direction.

Examples of direct and resolved photon processes with dijets in the final state are depicted
in Figure 2. Resolved processes give a large contribution in photoproduction but are suppressed
in DIS. The diffractive exchange in these diagrams is depicted as a pomeron (IP).
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Figure 1: Illustration of the generic diffractive process ep → eXY . The systems X and Y are
separated by the largest gap in the rapidity distribution of the final state hadrons.

The usual DIS kinematic variables are defined as:

Q2 ≡ −q2 , y ≡
q · P

k · P
, x ≡

Q2

2P · q
. (1)
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Diffractive factorisation scheme: diffractive di-jet
generic diffractive scattering at HERA
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Figure 2: Leading order diagrams for diffractive dijet production at HERA with the diffrac-
tive exchange depicted as a pomeron (IP). a) Direct (point-like) photon process (photon-gluon
fusion), b) resolved (hadron-like) photon process.

These three variables are related through Q2 ≈ sxy, in which s ≡ (k + P )2 is the fixed ep
centre-of-mass energy squared. The invariant mass of the photon-proton systemW is given by

W =
√

(q + P )2 ≈
√

y s − Q2 . (2)

With pX and pY representing the 4-momenta of the systemsX and Y , we define

M2
X ≡ p2

X , M2
Y ≡ p2

Y , t ≡ (P − pY )2 , xIP ≡
q · (P − pY )

q · P
. (3)

The quantities MX and MY are the invariant masses of the systems X and Y , t is the squared
four-momentum transferred at the proton vertex and xIP represents the fraction of the proton
beam momentum transferred to the system X . Diffractive events are characterised by small
values of xIP ( ∼< 0.05). With u and v denoting the four-momenta of the two partons (Figure 2b)
or photon and parton (Figure 2a) entering the hard subprocess, the dijet system has squared
invariant mass

M2
12 = (u + v)2 . (4)

The fractional longitudinal momenta carried by the partons from the photon (xγ) and the diffrac-
tive exchange (zIP ) are given by

xγ =
P · u

P · q
, zIP =

q · v

q · (P − pY )
. (5)

The measurements are performed in the region xIP < 0.03, −t < 1 GeV2 andMY < 1.6 GeV,
where the cross section is dominated by scattering processes in which the proton stays intact.
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Introduce a hard scale to probe 
“parton skeleton” of the Pomeron!
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factorisation 
formula

3 Diffractive Dijet Production in the Factorisation Approach

In the QCD factorisation approach, diffractive ep dijet cross sections are calculated according
to the formula

dσ(ep → e + 2 jets + X ′ + Y ) =
∑

i,j

∫

dy fγ/e(y)

∫

dxγ fj/γ(xγ , µ
2
F ) ×

×

∫

dt

∫

dxIP

∫

dzIP dσ̂(ij → 2 jets) fD
i (zIP , µ2

F , xIP , t), (6)

in which the sum runs over all contributing partons, fγ/e is the photon flux from the positron
and fj/γ are the photon parton densities. For direct photon interactions, fj/γ = δ(1 − xγ).
The partonic cross sections are denoted by σ̂ and fD

i are the diffractive parton densities of the
proton. The factorisation scale µF is assumed to be identical at the photon and proton vertices.
In the present analysis, the jet transverse energy is larger than Q for most of the data and is
therefore used as the factorisation scale and as the renormalisation scale both in DIS and in
photoproduction. The variable X ′ denotes the part of the hadronic system X which is not
contained in the two jets.

The H1 Collaboration has determined diffractive parton densities from QCD fits to inclusive
diffractive DIS data in [2, 3]. In the parameterisations used for these fits, the xIP and t depen-
dences of the diffractive parton distributions were factorised from the dependences on the scale
µF and the fractional parton momentum zIP :

fD
i (zIP , µ2

F , xIP , t) = fIP (xIP , t) fi,IP (zIP , µ2
F ). (7)

The factor fIP (xIP , t) was parameterised as suggested by Regge theory. The dependence on
zIP was parameterised at a starting scale and evolved to the scale at which the inclusive data
were measured using the DGLAP evolution equations [26, 27]. The inclusive diffractive DIS
data [2,3] are well described using this approach. For xIP > 0.01, small additional contributions
from sub-leading meson (‘reggeon’) exchange have to be taken into account to describe the data.

The H1 Collaboration has published QCD fits to two different data sets of inclusive diffrac-
tive DIS events. In a first analysis [2], data taken in the year 1994 were used to extract the LO
‘H1 fit 2’ parton densities which have been used previously in comparisons with diffractive dijet
production in DIS at HERA and at the Tevatron. A second analysis was based on the larger data
samples of the years 1997–2000 [3]. The fit in [3] led to the NLO ‘H1 2006 Fit A’ and NLO
‘H1 2006 Fit B’ DPDFs which both give a good description of inclusive diffraction, and which
are the basis of the dijet predictions in this paper. The two sets of parton densities differ mainly
in the gluon density at high fractional parton momentum, which is poorly constrained by the
inclusive diffractive scattering data. The gluon density of Fit A is peaked at the starting scale at
high fractional momentum and that of Fit B is flat.

4 Next-to-leading Order QCD Calculations

Existing programs which calculate NLO QCD partonic cross sections for dijet production in
inclusive DIS and photoproduction can be adapted to calculate cross sections in diffraction.
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QCD factorisation in diffraction

3 Diffractive Dijet Production in the Factorisation Approach
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photoproduction. The variable X ′ denotes the part of the hadronic system X which is not
contained in the two jets.

The H1 Collaboration has determined diffractive parton densities from QCD fits to inclusive
diffractive DIS data in [2, 3]. In the parameterisations used for these fits, the xIP and t depen-
dences of the diffractive parton distributions were factorised from the dependences on the scale
µF and the fractional parton momentum zIP :

fD
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F , xIP , t) = fIP (xIP , t) fi,IP (zIP , µ2
F ). (7)

The factor fIP (xIP , t) was parameterised as suggested by Regge theory. The dependence on
zIP was parameterised at a starting scale and evolved to the scale at which the inclusive data
were measured using the DGLAP evolution equations [26, 27]. The inclusive diffractive DIS
data [2,3] are well described using this approach. For xIP > 0.01, small additional contributions
from sub-leading meson (‘reggeon’) exchange have to be taken into account to describe the data.

The H1 Collaboration has published QCD fits to two different data sets of inclusive diffrac-
tive DIS events. In a first analysis [2], data taken in the year 1994 were used to extract the LO
‘H1 fit 2’ parton densities which have been used previously in comparisons with diffractive dijet
production in DIS at HERA and at the Tevatron. A second analysis was based on the larger data
samples of the years 1997–2000 [3]. The fit in [3] led to the NLO ‘H1 2006 Fit A’ and NLO
‘H1 2006 Fit B’ DPDFs which both give a good description of inclusive diffraction, and which
are the basis of the dijet predictions in this paper. The two sets of parton densities differ mainly
in the gluon density at high fractional parton momentum, which is poorly constrained by the
inclusive diffractive scattering data. The gluon density of Fit A is peaked at the starting scale at
high fractional momentum and that of Fit B is flat.

4 Next-to-leading Order QCD Calculations

Existing programs which calculate NLO QCD partonic cross sections for dijet production in
inclusive DIS and photoproduction can be adapted to calculate cross sections in diffraction.
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×
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At larger x subleading “Reggeon” 
is to be included

We have two different factorisations:  
• diffractive fact.n: proven by Collins for a hard diffractive scattering (hep-ph/9709499)  
• Regge fact.n: relates the power of       in diffractive DIS to the power of   

                      in hadron-hadron elastic scattering and can be broken

detected particle(s) of particular kind(s) carrying some particular fraction of the beam’s
momentum and carrying some given transverse momentum. Hence the proof applies to the
fracture function formalism of Trentadue and Veneziano [14], for deep-inelastic processes2.
Factorization for diffractive scattering is a special case [15] of fracture function factorization.

Furthermore, it is possible to discuss any of the normal hard scattering processes which
are lepton induced: in addition to the deep-inelastic cross section itself, the proof applies,
for example, to the case where jets of large transverse momentum are detected and where
particular particles in the ‘current fragmentation region’ are detected.

The proof in the present paper justifies, from fundamental principles, the analysis [16,17]
of diffractive deep-inelastic processes in terms of parton densities in the pomeron. Note that
the only real use of the pomeron in these analyses is as a label for a particular power law
for the xP dependence of diffractive cross sections, with the exponent actually being a free
power. Indeed, the QCD analysis by H1 [16], which has two phenomenological power laws,
is also covered by the theorem proved in this paper. However, I will not at all address
the separate and important question of whether Regge factorization is also valid. Regge
factorization relates, for example, the power of xP measured in diffractive deep-inelastic
scattering to the power of s measured in hadron-hadron elastic scattering.

Berera and Soper [12] provided arguments that hard-scattering factorization should be
true in diffractive lepton-induced processes, and the present paper completes the proof. The
bulk of the proof follows the usual methods [5,18] for proving factorization, and, as pointed
out by Berera and Soper [12], the only new element that is needed is a proper treatment of
the soft-gluon cancellation for the processes in question. The essential point of the present
paper is to show that there exists a contour deformation that permits the methods of Collins
and Sterman [18] to be used.

II. FACTORIZATION, PARTON DENSITIES

In this section, I will review the factorization theorem that is to be proved.
As stated above, the factorization theorem for diffractive hard processes has the same

form as for inclusive processes. For example, for diffractive deep-inelastic scattering e+p →
e′ + X + p′, we have3

2 Note that since factorization fails for diffractive hard processes in hadron-hadron scattering,
it follows that the fracture function formalism also fails in hadron-hadron scattering. The proof
given by Trentadue and Veneziano does not treat the soft exchanges which break factorization in

hadron-hadron scattering.

3 For the purposes of this paper, I define FD
2 to be the value of F2 computed from those events

containing a final-state proton p′ with the specified kinematics. So the use of the word ‘diffractive’

to describe the process is not really correct. Our definition is the one used by the H1 experiment
[16], and it contrasts with the definition used by the ZEUS experiment [17], which subtracts the
non-diffractive contribution. Of course, given the ‘diffractive’ FD

2 defined here, one can extract the

leading power at small xP, which, at least for our present purposes, is the definition of the truly
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✓   DPDFs are extracted from global NLO fits of inclusive diffraction data at HERA 
✓   Predictions based upon extracted DPDFs are fairly consistent with theoretical models 
✓   Important tool for diffractive factorisation breaking studies (especially in had-had coll.)
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QCD factorisation in diffraction

✓  Triple-Regge graphs for diffractive DIS offer a way  
     to probe the structure function of the Pomeron 
 

✓   Provided that the parton densities in the Pomeron  
      are known, and factorisation holds, one can predict  
      the cross section of any hard diffractive process 
 

✓   Diffractive di-jets production in hadron-hadron  
      collisions is an important probe of QCD factorisation  
      in hadronic diffraction, historically has been  
      used to test QCD factorisation at Tevatron 
 

✓   Attempts to use the diffractive PDFs of  
      the Pomeron for diffractive jets production have 
      failed: Tevatron data contradict the predictions 
      by an order of magnitude 
 

✓   The reason: QCD factorisation is broken for hard  
      hadronic diffraction!

B.	Kopeliovich,	Diffrac2on-2018,	Reggio	Calabria2

The triple-Regge graphs for diffractive DIS, can be 
interpreted as a way to measure the structure function 
(PDFs) of the Pomeron. (Ingelman-Schlein)

However, the attempts to use this diffractive PDFs 
of the Pomeron for diffractive jet production failed 
badly: data from the Tevatron contradict the 
predictions by an order of magnitude. And for a 
good reason.

Factorization is broken for hard hadronic diffraction.

Once the parton densities in the Pomeron are known and 
factorization is at work, one can try to predict the cross 
section of any hard hadronic diffraction.

QCD factorization in diffraction

B.	Kopeliovich,	Diffrac2on-2018,	Reggio	Calabria2

The triple-Regge graphs for diffractive DIS, can be 
interpreted as a way to measure the structure function 
(PDFs) of the Pomeron. (Ingelman-Schlein)

However, the attempts to use this diffractive PDFs 
of the Pomeron for diffractive jet production failed 
badly: data from the Tevatron contradict the 
predictions by an order of magnitude. And for a 
good reason.

Factorization is broken for hard hadronic diffraction.

Once the parton densities in the Pomeron are known and 
factorization is at work, one can try to predict the cross 
section of any hard hadronic diffraction.

QCD factorization in diffraction



QCD factorisation breaking in had-had collisions

Incoming hadrons are not elementary — experience soft interactions dissolving them 
leaving much fewer rapidity gap events than in ep scattering

Sources of QCD factorisation breaking, usually discussed: 

✓     soft survival (=absorptive) effects  
        (Khoze-Martin-Ryskin and Gotsman-Levin-Maor) 

✓     interplay of hard and soft fluctuations in incoming  
        hadron wave function  

✓     saturated shape of the universal dipole cross section 
        for large dipole sizes

Two distinct approaches treating the above effects: 

✓     Regge-corrected (KMR) approach — the first source of Regge 
        factorisation breaking is accounted at the cross section level by 
        “dressing” QCD factorisation formula by soft Pomeron exchanges 

✓     Color dipole approach — the universal way of inclusive/diffractive 
        scattering treatment, accounts for all the sources of Regge  
        factorisation breaking at the amplitude level (Kopeliovich, RP et al)



Good-Walker formulation

Dispersion of  
the eigenvalues  

distribution

Projectile has a substructure!

Hadron can be excited:  
not an eigenstate of interaction!

Completeness and orthogonality

Elastic and single diffractive  
amplitudes

Single diffractive cross section

mylogo

Optical analogy
Reggeon theory

Lund cascade model
ˇ

b. Good–Walker formalism
Projectile with a substructure
The mass eigenstates, Ψk (with Ψin = Ψ0), can differ from
the eigenstates of diffraction Φn, with amplitudes Tn
Φn =

∑

k cnkΨk

Elastic amplitude: ⟨Ψ0|T |Ψ0⟩ =
∑

|cn0|2Tn = ⟨T ⟩
dσel/d2b ∼ (

∑

c2n0Tn)2 = ⟨T ⟩2

Amplitude for diffractive transition to mass eigenstate Ψk :
⟨Ψk |T |Ψ0⟩ =

∑

n c∗nkTncn0
dσdiff/d2b =

∑

k ⟨Ψ0|T |Ψk⟩⟨Ψk |T |Ψ0⟩ = ⟨T 2⟩

Diffractive excitation determined by the fluctuations:
dσdiff ex/d2b = dσdiff − dσel = ⟨T 2⟩ − ⟨T ⟩2

Exclusive states in diffractive excitation 9 Gösta Gustafson Lund University

Important basis for the dipole picture!
�7

5

TABLE I: Interplay between the probabilities of hard and soft fluctu-
ations in a highly virtual photon and the cross section of interaction
of these fluctuations.

|Cα|2 σα σtot =
hard
∑

α=so f t
|Cα|2σα σsd=

hard
∑

α=so f t
|Cα|2σ2α

Hard ∼ 1 ∼ 1
Q2 ∼ 1

Q2 ∼ 1
Q4

Soft ∼ m2q
Q2 ∼ 1

m2q
∼ 1

Q2 ∼ 1
m2qQ2

independent. One can test this picture studying the Q2 depen-
dence of the diffractive DIS [26].
Since diffraction is a source of nuclear shadowing [27], that

also should scale in x. Indeed, most of experiment have not
found any variation with Q2 of shadowing in DIS on nuclei.
Only the NMC experiment managed to find a weak scaling
violation which agrees with theoretical expectations [28].
Notice that in spite of independence of Q2, both diffraction

and shadowing are higher twist effects. This is easy to check
considering photoproduction of heavy flavors. In this case the
hard scale is imposed by the heavy quarkmass, and diffraction
becomes a hard process with cross section vanishing as 1/m4Q.
Nuclear shadowing also vanishes as 1/m2Q.
The true leading twist diffraction and shadowing are asso-

ciated with gluon radiation considered below.

B. Diffractive Drell-Yan reaction

The dipole description of the Drell-Yan reaction in many
respects is similar to DIS. This is not a surprize, since the
two processes are related by QCD factorization. The cross
section of heavy photon (γ∗ → l̄l) radiation by a quark reads
[29, 30, 31, 32],

dσ(qp→ γ∗X)

d lnα
=

∫
d2rT |ΨT,L

γ∗q(α,rT )|2σqq̄(αrT ,x), (20)

Hereα is the fraction of the quark light-conemomentum taken
away by the dilepton; rT is the photon-quark transverse sepa-
ration; and the light-cone distribution functionΨ is similar to
one in DIS, Eq. (16), and can be found in [29, 30, 31].
Notice that the dileptons are radiated only in the fragmen-

tation region of the quark and are suppressed at mid rapidi-
ties. Indeed, due to CT the dipole cross section vanishes as
σqq̄(αrT ,x) ∝ α2 at α→ 0.
There is an important difference between DIS and DY re-

action. In the inclusive DIS cross section one integrates over
0 < α < 1, this is why this cross section is always a mixture
of soft and hard contributions (see Table 1). In the case of
DY reaction there is a new variable, x1, which is fraction of
the proton momentum carried by the dilepton. Since α > x1,
one can enhance the soft part of the DY cross section selecting
events with x1→ 1. This soft part of the DY process is subject

to unitarity corrections [33] which are more important than in
DIS [34].
Another distinction between DIS and DY is suppression of

the DY diffractive cross section. Namely, the forward cross
section of diffractive radiation qp→ l̄lqp is zero [30]. Indeed,
according to (10) the forward diffractive cross section is given
by the dispersion of the eigen amplitude distribution. How-
ever, in both eigen states |q⟩ and |qγ∗⟩ only quark interacts.
So the two eigen amplitudes are equal, and the dispersion is
zero.
Nevertheless, in the case of hadronic collision diffractive

DY cross section does not vanish in the forward direction. In
this case the two eigen states are |q̄q⟩ and |q̄qγ∗⟩ (for the sake
of simplicity we take a pion). The interacting component of
these Fock states is the q̄q dipole, however it gets a different
size after the q or q̄ radiate the photon. Then the two Fock
states interact differently, and this leads to a nonvanishing for-
ward diffraction. Notice that the diffractive cross section is
proportional to the dipole size [35].

C. Diffractive Higgs production

Diffractive higgsstrahlung is rather similar to diffractive
DY, since in both cases the radiated particle does not take
part in the interaction [35]. However, the Higgs coupling
to a quark is proportional to the quark mass, therefore, the
cross section of higgsstrahlung by light hadrons is vanishingly
small.
A larger cross section may emerge due to admixture of

heavy flavors in ligt hadrons. A novel mechanism of exclu-
sive Higgs production, pp→ Hpp, due to direct coaliscence
of heavy quarks, Q̄Q→ H was proposed in [36]. The cross
section of Higgs production was evaluated ssuming 1% of in-
trinsic charm (IC) [37] and that heavier flavors scale as 1/m2Q
[38]. The results are shown in Fig. 7 as function of Higgs
mass for different intrinsic heavy flavors.

FIG. 7: Cross section of exclusive diffractive Higgs production,
pp→Hpp, from intrinsic charm (IC), bottom (IB) and top (IT) [36].
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Mean dipole 
separation:

Kopeliovich & Povh, Z.Phys. A354 (1997)

Aligned jets!



Phenomenological dipole approach

Example: Naive GBW parameterization  
of HERA data

saturates at  
large separations

A point-like colorless object  
does not interact with  
external color field!

Theoretical calculation of  
the dipole CS is a challenge

see e.g. B. Kopeliovich et al, since 1981

Eigenvalue of the total cross section is 
the universal dipole cross section

SD cross section

wave function of  
a given Fock state

total DIS cross section

BUT! Can be extracted from data and used in ANY process!

color transparency

ANY diffractive scattering is due to a destructive interference of dipole scatterings!
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Eigenstates of interaction in QCD:  
color dipoles 

γ (∗)γ (∗)γ ∗

σqq σqq

  
V

p p p p

Fig. 20: The dipole representation of the amplitudes for Compton scattering (a) and for meson production (b),
corresponding to the graphs in Figs. 17a and 18.

factorization schemes have been developed, which combine features of the collinear and kt factorization
formalisms.

The two different types of factorization implement different ways of separating different parts of
the dynamics in a scattering process. The building blocks in a short-distance factorization formula corre-
spond to either small or large particle virtuality (or equivalently to small or large transverse momentum),
whereas the separation criterion in high-energy factorization is the particle rapidity. Collinear and k t

factorization are based on taking different limits: in the former case the limit of large Q2 at fixed xB and
in the latter case the limit of small xB at fixed Q2 (which must however be large enough to justify the
use of QCD perturbation theory). In the common limit of large Q2 and small xB the two schemes give
coinciding results. Instead of large Q2 one can also take a large quark mass in the limits just discussed.

A far-reaching representation of high-energy dynamics can be obtained by casting the results of kt

factorization into a particular form. The different building blocks in the graphs for Compton scattering
and meson production in Figs. 17a and 18 can be rearranged as shown in Fig. 20. The result admits a
very intuitive interpretation in a reference frame where the photon carries large momentum (this may be
the proton rest frame but also a frame where the proton moves fast, see Fig. 14): the initial photon splits
into a quark-antiquark pair, which scatters on the proton and finally forms a photon or meson again. This
is the picture we have already appealed to in Sect. 1.2.

In addition, one can perform a Fourier transformation and trade the relative transverse momentum
between quark and antiquark for their transverse distance r, which is conserved in the scattering on the
target. The quark-antiquark pair acts as a color dipole, and its scattering on the proton is described by
a “dipole cross section” σqq̄ depending on r and on xIP (or on xB in the case of inclusive DIS). The
wave functions of the photon and the meson depend on r after Fourier transformation, and at small r
the photon wave function is perturbatively calculable. Typical values of r in a scattering process are
determined by the inverse of the hard momentum scale, i.e. r ∼ (Q2 + M2

V )−1/2. An important result of
high-energy factorization is the relation

σqq̄(r, x) ∝ r2xg(x) (7)

at small r, where we have replaced the generalized gluon distribution by the usual one in the spirit of the
leading log x approximation. A more precise version of the relation (7) involves the kt dependent gluon
distribution. The dipole cross section vanishes at r = 0 in accordance with the phenomenon of “color
transparency”: a hadron becomes more and more transparent for a color dipole of decreasing size.

The scope of the dipole picture is wider than we have presented so far. It is tempting to apply it
outside the region where it can be derived in perturbation theory, by modeling the dipole cross section
and the photon wave function at large distance r. This has been very been fruitful in phenomenology, as
we will see in the next section.

The dipole picture is well suited to understand the t dependence of exclusive processes, parameter-
ized as dσ/dt ∝ exp(−b|t|) at small t. Figure 21 shows that b decreases with increasing scale Q2 +M2

V

QCD factorisation



Hadronic diffraction via dipoles: diffractive Drell-Yan
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Diffractive 
Drell Yan 
(semi-hard)

X

l

l̄

γ∗p1

p2 p4

ΣX

2

=

IP

p p

p

p p

p
IP IP

IP, IR

FIG. 1: The cross section of the diffractive DY process summed over all excitation channels at
fixed effective mass MX (left panel) corresponding to the Mueller graph in Regge picture (right

panel).

of small xγ1 → 0 and large zp ≡ p+4 /p
+
2 → 1 the diffractive DY cross section is given by

the Mueller graph shown in Fig. 1. In this case, the end-point behavior is dictated by the
following general result

dσ

dzpdxγ1dt

∣

∣

∣

t→0
∝

1

(1− zp)2αIP (t)−1xε
γ1

, (1.3)

where αIP (t) is the Pomeron trajectory corresponding to the t-channel exchange, and ε is
equal to 1 or 1/2 for the Pomeron IP or Reggeon IR exchange corresponding to γ∗ emission
from sea or valence quarks, respectively (see Fig. 1).

As an alternative to the factorization based QCD approach, the dipole description of the
QCD diffraction, was presented in Refs. [11] (see also Ref. [12]). It is based on the fact that
dipoles of different transverse size r⊥ interact with different cross sections σ(r⊥), leading to
the single inelastic diffractive scattering with a cross section, which in the forward limit is
given by [11],

σsd

dp2⊥

∣

∣

∣

∣

∣

p⊥=0

=
⟨σ2(r⊥)⟩ − ⟨σ(r⊥)⟩2

16π
, (1.4)

where p⊥ is the transverse momentum of the recoil proton, σ(r⊥) is the universal dipole-
proton cross section, and operation ⟨...⟩ means averaging over the dipole separation.

The color dipole description of Drell-Yan inclusive process first introduced in Ref. [13]
(see also Ref. [14]), treats the production of a heavy di-lepton like photon bremsstrahlung,
rather than q̄q annihilation. Such a difference is a consequence of Lorentz non-invariance of
the space-time description of the interaction, which varies with the reference frame. Only
observables must be Lorentz-invariant.

The dipole approach applied to diffractive Drell-Yan reaction in Ref. [5], led to the QCD
factorisation breaking, which manifests itself in specific features like a significant damping
of the cross section at high

√
s compared to the inclusive DY case. This is rather unusual,

since a diffractive cross section, which is proportional to the dipole cross section squared,
could be expected to rise with energy steeper than the total inclusive cross section, like it
occurs in the diffractive DIS process. At the same time, the ratio of the DDY to DY cross
sections was found in Ref. [5] to rise with the hard scale, M2. This is also in variance with
diffraction in DIS, which is associated with the soft interactions [15, 16].

The absorptive corrections affect differently the diagonal and off-diagonal terms in the
hadronic current [17], in opposite directions, leading to an unavoidable breakdown of the

3

superposition has a Good-Walker structure

Diffractive DIS vs diffractive DY

interplay between hard and soft 
fluctuations is pronounced!

SD DY/gauge bosons SD heavy quarks ★   diffractive factorisation is  
        automatically broken  
★   any SD reaction is a superposition 
        of dipole amplitudes  
★    gap survival is automatically 
        included at the amplitude level on  
        the same footing as dip. CS  
★    works for a variety of data  
         in terms of universal dip. CS
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FIG. 8: Cross section of diffractive production of heavy flavors
as function of energy. The experimental points are the results
of the E690 [44] and CDF [48] experiments.

cross section is integrated over xF > 0.85, and beauty
over xF > 0.9 (same for top). All the cross sections
steadily rise with energy. The cross sections of charm
and beauty production differ by about an order of mag-
nitude what confirms the expected leading twist behavior
1/m2

Q.
We also calculated the x1 distribution of a diffractively

produced charm quark by integrating over all other vari-
ables. x1 = p+

c /p+
p is the ratio of plus components of the

produced c-quark and the incoming proton. The results
are shown in Fig. 9 at RHIC and LHC energies.

Notice that to be compared with data (unavailable so
far) for production of charmed mesons, this result has
to be corrected for the fragmentation c → D which is
poorly known. The resulting behavior at x1 → 1 should
obey the end-point behavior dictated by Regge. There-
fore we expect it to be less steep than what is plotted in
Fig. 9. One may wonder: a convolution with the frag-
mentation function c → D may only result in a steeper
fall off at x1 → 1, how can it become less steep? The
answer is: the convolution procedure is incorrect, QCD
factorization badly fails at x1 → 1. The usual fragmen-
tation function measured, say, in e+e− annihilation, cor-
responds to a fast c-quark producing a jet and picking up
a slow light quark from vacuum to form a D-meson. In
hadronic collisions at large x1 hadronization occurs dif-
ferently: a fast projectile light quark picks up a slow c-
quarks produced perturbatively. Correspondingly, in the
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FIG. 9: The cross section of diffractive excitation of a proton
with charm production as function of fraction x1 of the initial
proton momentum carried by the charm quark. The cross
section is shown at the energies of RHIC and LHC.

case of diffractive production of a heavy flavored baryon
a leading projectile diquark can pick up the heavy quark.

Notice also that x1 has a bottom bound imposed by the
kinematics of diffraction, x1 > 4m2

Q/(1−xF )s, where xF

is the Feynman variable of the recoil proton in pp → Xp.
In order to comply with available data (see next section)
we integrate over xF > 0.85 for charm (also top), and
xF > 0.9 for beauty.

Our results for transverse momentum distribution of
diffractively produced quarks are presented in Figs. (10)-
(12) for different heavy flavors and energies.

There pT distributions hardly correlate with x1 of the
heavy quark, what is quite different from the usual sea-
gull effect. We remind, however, that this is not the
usual factorization based hadronization. In this case a
fast projectile quark-spectator picks up a slow heavy fla-
vor. Therefore, the transverse momentum of the pro-
duced heavy flavored meson is mainly controlled by the
transverse momentum of the light spectator.

To conclude this section, we should comment on the ac-
curacy of performed calculations. The main uncertainty
seems to be related to the absorptive (unitarity) correc-
tions. Comparing different models, the difference is not
dramatic, of the order of 10%, with a probability fac-
tor K = 0.14 at the Tevatron energy. However, all those
models may miss the specific dynamics of interaction dis-
cussed in Sect. VI and overestimate diffraction at the
LHC energy by much more than 10%. The next theoret-
ical uncertainty is related to the choice of heavy quark

Kopeliovich et al 2006RP et al 2011,12

We evaluate the absorptive correction (8.7) at the mean impact parameter ⟨b2⟩ = 2Bd and
for the Tevatron energy

√
s = 2TeV arrive at the negligibly small value Im fd(0, rd) ≈ 0.01.

However, the number of such dipole rises with hardness of the process,and may substan-
tially enhance the magnitude of the absorptive corrections. The gap survival amplitude for
nd projectile dipoles reads,

S(nd)
d =

[

1− Im fd(b, rd)
]nd. (8.8)

The mean number of dipoles can be estimated in in the double-leading-log approximation
to the DGLAP evolution formulated in impact parameters [43], the mean number of such
dipoles is given by

⟨nd⟩ =

√

12

β0
ln

(

1

αs(M2
G)

)

ln

(

(1− xF )
s

s0

)

. (8.9)

Here the values of Bjorken x of the radiated gluons is restricted by the invariant mass of
the diffractive excitation, x > s0/M2

X = s0/(1− xF )s. For the kinematics of experiments at
the Tevatron collider (see next section), 1− xF < 0.1,

√
s = 2TeV, the number of radiated

dipoles is not large, ⟨nd⟩ ! 6. We conclude that the absorptive corrections Eq. (8.8) to
the gap survival amplitude are rather weak, less than 5%, i.e. about 10% in the survival
probability. This correction is certainly small compared to other theoretical uncertainties of
our calculations. Notice that a similar correction due to radiation of soft gluons was found
in [44] for the gap survival probability in leading neutron production in DIS.

C. Comparison with data

Thus, our calculations effectively cover the gluon radiation, so the triple-Pomeron term
is included. This is important because this term dominates the diffractive cross section [46].
So we can compare with available data from the CDF experiment [9] on W and Z diffractive
production depicted in Fig. 10.
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FIG. 10: The diffractive-to-inclusive ratio as function of the invariant mass squared of the produced
dilepton. The CDF data for W and Z production were taken at the Tevatron energy (
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However, in order to compare our results with CDF data, we have to introduce in our
calculations the proper experimental cuts, namely, 0.03 < ξ ≡ 1 − xF < 0.1 [9]. Since our
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Diffractive vs inclusive di-jets

B. Di↵ractive excitation of a projectile gluon

Turning now to the di↵ractive gluon excitations, the di↵erential SD cross sections can be
written as
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for G ! qq̄ and G ! G1G2 subprocesses, respectively. In analogy with the di↵ractive
bremsstrahlung process discussed in detail above, we find
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where W1,2 are defined above in Eq. (4.29). In what follows, these formulas will be used in
analysis of the SD-to-inclusive ratio.

V. DIFFRACTIVE TO INCLUSIVE RATIO

The CDF Run II experimental data [39] on SD dijet production are given, in particular,
in terms of the SD-to-inclusive ratio RSD/incl, which is defined as follows

RSD/incl =
��SD/�⇠

��incl
, �⇠ = 0.06 , ⇠ ⌘ 1� xF =

M2
X

s
, (5.1)

where MX is the invariant mass squared of the di↵ractive system X, M2
X , containing the

dijet, xF is the Feynman variable of the recoil antiproton, ��SD (��incl) are the SD (in-
clusive) dijet cross sections integrated over the detector acceptance regions in ⇠ ⌘ 1 � xF

variable, 0.03 < ⇠ < 0.09, in jet pseudorapidities, |⌘1,2| < 2.5, in jet transverse energies,
E1,2

T > 5 GeV, and in the antiproton transverse momentum squared, |t| < 1 GeV2. The
SD-to-inclusive ratio is then measured as function of the hard scale Q2 � R2

0 of the dijet
and xBj,

Q2 =
(E1

T + E2
T )

2

4
, xBj =
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s
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T e

�⌘i . (5.2)

It is di�cult to make one-to-one correspondence between theory and data for the ob-
servables entering Eq. (5.1), but one can rely on approximations. Considering, for example,
the gluon Bremsstrahlung mechanism q ! qG as a suitable example which was thoroughly
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coherently at the amplitude level, which has been previously proven to work well in the
di↵ractive Abelian radiation processes [7–9] and di↵ractive heavy flavor production [10]. In
this paper, following the original studies of inclusive [22, 23] and di↵ractive gluon radiation
[10, 18], we apply the light-cone dipole approach to the analysis of inclusive and di↵ractive
gluon radiation beyond QCD factorisation. By comparing the dipole model results with the
Tevatron data for the SD-to-inclusive ratio, we check whether the gap survival e↵ects are
properly accounted for in the dipole treatment of the di↵ractive non-Abelian radiation.

The paper is organised as follows. In Section II, we develop the dipole model formu-
lation of the inclusive dijet production in the target rest frame based upon the gluon
Bremsstrahlung mechanism (quark excitation) as well as from the gluon splitting mech-
anism (gluon excitation). In Section III, the models for the universal dipole cross section
are briefly discussed in the soft and hard dipole scattering regimes. In Section IV, we extend
the dipole formulation to the SD dijet production and derive the corresponding parton- and
hadron-level amplitudes as well as the SD cross sections in the hard scattering limit. Then,
in Section V we construct the SD-to-inclusive ratio of the cross sections taking into account
the CDF Run II experimental constraints on the phase space and present the numerical
results. Finally, concluding remarks are given in Section VI.

II. INCLUSIVE BACK-TO-BACK DIJETS

A. Dijets from quark excitations

At forward rapidities inclusive production of high-pT jets in the dipole picture is dom-
inated by the gluon Bremsstrahlung mechanism o↵ a projectile quark [22] (similar to the
Drell-Yan process [24–27]). The leading order (“skeleton”) diagrams of this process are
depicted in Fig. 1. In this case, x1 ⌘ p+/P+

1 . 1, x2 ⌘ p�/P�
2 ⌧ 1, where p is the 4-

momentum of the radiated gluon, and P1,2 are the 4-momenta of the projectile and target
nucleons, respectively.

~b1 ~b2 ~b3

FIG. 1: The leading-order contributions to the gluon Bremsstrahlung mechanism of high-pT back-
to-back dijets production in quark-nucleon qN ! qGX scattering.

Let us denote the transverse momenta (relative to the projectile quark) of the final quark
and gluon as ~p2 and ~p, respectively, their total momentum as ~q? = ~p2 + ~p, and the relative
momentum as ~ = ↵~p2 � ↵̄~p in terms of the light-cone momentum fraction ↵ carried by the
gluon. In the case of collinear projectile quark, the transverse momentum transfer is equal
to ~q?. Then, the inclusive dijet production amplitude B̂l(~q?,~) reads

B̂l(~q?,~) =

Z
d2bd2rei

~b~q?ei~r~Âl(qN ! qGN⇤
8 ) , (2.1)

4

B. Dijets from gluon excitations

At the central rapidities inclusive high-pT dijet production can acquire large contributions
from the gluon-initiated subprocesses GN ! qq̄X or GN ! GGX, as is shown in Fig. 2 by
upper and lower rows respectively.

~b1 ~b2 ~b3

~b1 ~b2 ~b3

FIG. 2: The leading-order contributions to high-pT dijet production in gluon-nucleon scattering
(GN ! qq̄X – upper row, and GN ! GGX – lower row) in the dipole picture.

The amplitude of the inclusive process GN ! qq̄N⇤
8 is given by the sum of three terms

corresponding to the diagrams shown in the upper row of Fig. 2,
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8 ) =

p
2
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where �̃µ̄
q̄ = i�y(�

µ̄
q̄ )

⇤, the impact parameters ~b1,2,3 are defined in Eq. (2.3), �q,q̄ are the
two-component spinors normalised as

X

µ,µ̄

�̃µ̄
q̄

�
�µ
q
†�⇤ = 1̂ ,

X

µ,µ̄

�
�µ
q
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â†b̂

�
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and the distribution amplitude of the G ! qq̄ splitting �̂G!qq̄ reads

 ̂G!qq̄(~r,↵) =

p
↵s
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p
2

n
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o
K0(✏ r) ,

with ✏2 = m2
q � ↵↵̄m2

G.
When taking square of the total inclusive G+N ! qq̄ +X amplitude

|A|2(~r1;~r2) ⌘
1

8

Z
d2s d{X}

X

�⇤,l,µ,µ̄
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�
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�†
(~s,~r2)

E
(2.19)

one performs an averaging over color index and, implicitly, over polarisation �⇤ of the pro-
jectile gluon G as well as valence quarks and their relative coordinates in the target nucleon.
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with the hard scale µ2 ⇠ 1/r2. Provided that this scale is not too large, like in the case
under consideration of pT -integrated observables of dijet production, we will not explic-
itly incorporate such a dependence, but for the sake of simplicity, will employ the GBW
parameterisation [31].

Besides saturation, a common property of all the dipole parameterisation is the color
transparency limit [17], meaning that a point-like colorless object does not interact with
external color fields, i.e.

�qq̄(x,~r) ' �0
r2

R2
0(x)

, r2 ⌧ R2
0(x) , (3.4)

which concerns the hard dipole scattering at the scale µ � Qs(x). The quadratic dependence
of the universal dipole cross section �qq̄ / r2 is a straightforward consequence of gauge
invariance and non-Abelian nature of QCD.

Integrating the inclusive dijet cross section (2.8) over ~, we write,

d�incl(qN ! qGX)

d(ln↵)
=
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e↵ (~r,~r,↵) . (3.5)

Here the e↵ective dipole cross section in the small dipole size limit r ⌧ R0(x2)
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·
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i
, x2 =
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xq s
,(3.6)

and s is the nucleon-nucleon c.m. energy squared. The fully di↵erential cross section for the
inclusive q +G production in this approximation takes a very simple form

d�NN
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where the phase space volume element is

d⌦ = dxq d ln↵ d2 . (3.8)

For the gluon-initiated processes G ! qq̄ and G ! G1G2 we have
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respectively.
In the soft limit Q2 ! ⇤2

QCD one can reach very small values of x defined in Eq. (3.6)
even at low energies. This signals about inappropriate use of variable x2 in this limit. In
soft and semi-soft reactions such as pion-proton scattering, or di↵ractive processes Drell-Yan
and gluon radiation, the saturation scale depends on the gluon-target collision c.m. energy
squared ŝ = xq s which is a more appropriate variable than the Bjorken x. Such reactions
are characterised by the associated scale Q2 ⇠ ⇤2

QCD ⇠ 1/R2
had at the soft hadronic scale

Rhad. Keeping the saturated ansatz of the dipole cross section (3.1), the corresponding
parameterisation for �0 ! �0(ŝ) and R0 ! R0(ŝ) has been found in Ref. [18]

R0(ŝ) = 0.88 fm (s0/ŝ)
0.14 , �0(ŝ) = �⇡p

tot(ŝ)
⇣
1 +

3R
2
0(ŝ)

8hr2chi⇡

⌘
.
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R0(ŝ) = 0.88 fm (s0/ŝ)
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which concerns the hard dipole scattering at the scale µ � Qs(x). The quadratic dependence
of the universal dipole cross section �qq̄ / r2 is a straightforward consequence of gauge
invariance and non-Abelian nature of QCD.

Integrating the inclusive dijet cross section (2.8) over ~, we write,

d�incl(qN ! qGX)

d(ln↵)
=

Z
d2r | q!qG(~r,↵)|2⌃q!qG

e↵ (~r,~r,↵) . (3.5)

Here the e↵ective dipole cross section in the small dipole size limit r ⌧ R0(x2)

⌃q!qG
e↵ (~r,~r,↵) ' Kq!qG

incl (x2,↵) r
2 , Kq!qG

incl (x2,↵) =
�0

R2
0(x2)

·
h9
4
↵̄ + ↵2

i
, x2 =

M2

xq s
,(3.6)

and s is the nucleon-nucleon c.m. energy squared. The fully di↵erential cross section for the
inclusive q +G production in this approximation takes a very simple form

d�NN
incl

d⌦
' Kq!qG

incl (x2,↵)

(2⇡)2
q(xq, µ

2)

Z
d2rd2r0 ei~(~r�~r 0) (~r · ~r 0) q!qG(~r,↵) 

†
q!qG(~r

0,↵) , (3.7)

where the phase space volume element is

d⌦ = dxq d ln↵ d2 . (3.8)

For the gluon-initiated processes G ! qq̄ and G ! G1G2 we have

KG!qq̄
incl (x2,↵) =

�0

R2
0(x2)

·
h
1� 9

4
↵↵̄

i
, KG!G1G2

incl (x2,↵) =
9�0

4R2
0(x2)

·
h
1� ↵↵̄

i
, (3.9)

respectively.
In the soft limit Q2 ! ⇤2

QCD one can reach very small values of x defined in Eq. (3.6)
even at low energies. This signals about inappropriate use of variable x2 in this limit. In
soft and semi-soft reactions such as pion-proton scattering, or di↵ractive processes Drell-Yan
and gluon radiation, the saturation scale depends on the gluon-target collision c.m. energy
squared ŝ = xq s which is a more appropriate variable than the Bjorken x. Such reactions
are characterised by the associated scale Q2 ⇠ ⇤2

QCD ⇠ 1/R2
had at the soft hadronic scale

Rhad. Keeping the saturated ansatz of the dipole cross section (3.1), the corresponding
parameterisation for �0 ! �0(ŝ) and R0 ! R0(ŝ) has been found in Ref. [18]

R0(ŝ) = 0.88 fm (s0/ŝ)
0.14 , �0(ŝ) = �⇡p

tot(ŝ)
⇣
1 +

3R
2
0(ŝ)

8hr2chi⇡

⌘
.
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in terms of the pion-proton total cross section given by �⇡p
tot(ŝ) = 23.6(ŝ/s0)0.08 mb [36],

s0 = 1000GeV2, the mean pion charge radius squared hr2chi⇡ = 0.44 fm2 [37]. This parame-
terisation describes well HERA data for the proton structure function at medium-high scales
up to Q2 ⇠ 10 GeV2. The model (3.10) will be referred below to as the KST model and
used in our analysis of di↵ractive dijet production in high-energy hadronic collisions.

IV. SINGLE-DIFFRACTIVE DIJETS PRODUCTION

The main contribution to the di↵ractive dijets production cross section at very forward
rapidities is given by the di↵ractive gluon bremsstrahlung o↵ the projectile valence quarks
q ! qG as is demonstrated in Fig. 3 (for an analogous discussion in the case of di↵ractive
Abelian bremsstrahlung, see Refs. [6–9, 11]). At hadron colliders such as Tevatron, however,
the jet rapidities may extend down to central values where the contribution from di↵ractive
gluon excitation, given by the gluon splitting subprocesses G ! qq̄ and G ! GG, become
important. Di↵ractive excitation of the projectile sea-quarks also contributes, but less com-
pared with gluons. In what follows, we discuss all these reactions on the same footing and
derive the corresponding SD cross sections.

A. Di↵ractive excitation of a projectile quark

q1

q2

q3

G

N

N N⇤
8

N

FIG. 3: Dijet production from di↵ractive quark excitation in NN collisions. Additional graphs
come from q1 $ q2 and q1 $ q3 permutations. Large filled circle corresponds to three perturbative
leading-order contributions depicted in Fig. 1.

The hadron-level SD amplitude with the gluon bremsstrahlung process q ! qG can be
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Then, using Eq. (2.7) one arrives at the SD amplitude of qN ! qGN process

Âq
l =

3i
p
3

16
⌧l q!qG(~r,↵)
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3
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⌘
+ 3

⇣
�(~b2,~b3)� �(~b3,~b3)

⌘o
, (4.5)

which is infrared finite and vanishes in the color transparecy limit ~r ! 0, despite the
divergency in the amplitude �(~bk,~bl). The symmetry properties of �(~bk,~bl) in particular
imply,

Z
d2b

X

i

Ci�(~di, ~di) = 0 for
X

i

Ci = 0 , ~di = ~b+ ~yi

for any ~yi such that in the forward di↵ractive scattering limit ~q? ! 0 we finally have,
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p
3

32
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For small dipoles r2 ⌧ R2
0(x), the di↵ractive amplitude transforms to
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ˆ̃ q!qG(~,↵) , (4.7)

where ~r = @/@~, such that
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f

n
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�i

1

4
. (4.8)

Di↵ractive quark-to-dijet excitation o↵ers another test of factorization. Indeed in this case
there are no spectator partons, which would cause a suppressive gap survival probability,
which usually identified as the reason for factorisation breaking. However, even without such
a gap survival factor factorisation fails. Indeed, the corresponding di↵erential cross section
of the SD dijets production in the quark-nucleon scattering qN ! qGN has the following
form (c.f. Ref. [18])

d3�SD(qN ! qGN)
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8
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where the factor 1/3 stands for averaging over colors of the projectile quark. In the color
transparency (or large radiated gluon transverse momentum) limit, we get
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where the amplitude squared (averaged over the incoming quark helicities) reads explicitly
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Di↵ractive quark-to-dijet excitation o↵ers another test of factorization. Indeed in this case
there are no spectator partons, which would cause a suppressive gap survival probability,
which usually identified as the reason for factorisation breaking. However, even without such
a gap survival factor factorisation fails. Indeed, the corresponding di↵erential cross section
of the SD dijets production in the quark-nucleon scattering qN ! qGN has the following
form (c.f. Ref. [18])
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where the factor 1/3 stands for averaging over colors of the projectile quark. In the color
transparency (or large radiated gluon transverse momentum) limit, we get
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which is infrared finite and vanishes in the color transparecy limit ~r ! 0, despite the
divergency in the amplitude �(~bk,~bl). The symmetry properties of �(~bk,~bl) in particular
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l (
~b,~r) = �9i

p
3

32
⌧l

Z
d2rei~~r q!qG(~r,↵)�qq̄(~r) . (4.6)

For small dipoles r2 ⌧ R2
0(x), the di↵ractive amplitude transforms to

Âq
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Di↵ractive quark-to-dijet excitation o↵ers another test of factorization. Indeed in this case
there are no spectator partons, which would cause a suppressive gap survival probability,
which usually identified as the reason for factorisation breaking. However, even without such
a gap survival factor factorisation fails. Indeed, the corresponding di↵erential cross section
of the SD dijets production in the quark-nucleon scattering qN ! qGN has the following
form (c.f. Ref. [18])
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Di↵ractive quark-to-dijet excitation o↵ers another test of factorization. Indeed in this case
there are no spectator partons, which would cause a suppressive gap survival probability,
which usually identified as the reason for factorisation breaking. However, even without such
a gap survival factor factorisation fails. Indeed, the corresponding di↵erential cross section
of the SD dijets production in the quark-nucleon scattering qN ! qGN has the following
form (c.f. Ref. [18])
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where the factor 1/3 stands for averaging over colors of the projectile quark. In the color
transparency (or large radiated gluon transverse momentum) limit, we get
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Diffractive di-jets in NN collisions

in terms of the pion-proton total cross section given by �⇡p
tot(ŝ) = 23.6(ŝ/s0)0.08 mb [36],

s0 = 1000GeV2, the mean pion charge radius squared hr2chi⇡ = 0.44 fm2 [37]. This parame-
terisation describes well HERA data for the proton structure function at medium-high scales
up to Q2 ⇠ 10 GeV2. The model (3.10) will be referred below to as the KST model and
used in our analysis of di↵ractive dijet production in high-energy hadronic collisions.

IV. SINGLE-DIFFRACTIVE DIJETS PRODUCTION

The main contribution to the di↵ractive dijets production cross section at very forward
rapidities is given by the di↵ractive gluon bremsstrahlung o↵ the projectile valence quarks
q ! qG as is demonstrated in Fig. 3 (for an analogous discussion in the case of di↵ractive
Abelian bremsstrahlung, see Refs. [6–9, 11]). At hadron colliders such as Tevatron, however,
the jet rapidities may extend down to central values where the contribution from di↵ractive
gluon excitation, given by the gluon splitting subprocesses G ! qq̄ and G ! GG, become
important. Di↵ractive excitation of the projectile sea-quarks also contributes, but less com-
pared with gluons. In what follows, we discuss all these reactions on the same footing and
derive the corresponding SD cross sections.

A. Di↵ractive excitation of a projectile quark

q1

q2

q3

G

N

N N⇤
8

N

FIG. 3: Dijet production from di↵ractive quark excitation in NN collisions. Additional graphs
come from q1 $ q2 and q1 $ q3 permutations. Large filled circle corresponds to three perturbative
leading-order contributions depicted in Fig. 1.

The hadron-level SD amplitude with the gluon bremsstrahlung process q ! qG can be

11

where a ⌘ hr2chi�1
p is the inverse proton mean charge radius squared, R is the generalised par-

ton distribution function in the projectile nucleon. In the case of di↵ractive quark excitation
we obtain
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in terms of the quark PDF q(xq, µ2) where the projectile (valence or sea) quark momentum
fraction is x1

q ⌘ xq.
The SD quark-gluon dijet production cross section in nucleon-nucleon collisions N+N !

qGX +N is found as
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l (ÂSD
l )† , (4.24)

where q2? = �t. The momentum conservation reduces the integral over the incoming nucleon
wave function asZ
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such that the basic integrals appearing in the SD cross section
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where ~R1 ⌘ ~r12, ~R2 ⌘ ~r13, ~R3 ⌘ ~r23 = ~r13 � ~r12, can be taken fully analytically. Finally,
as usual the SD cross section is the forward limit is inversely proportional to the standard
Regge-parameterised di↵ractive t-slope, BSD(s), namely,
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where ↵0
IP = 0.25 GeV�2 and the phase space volume element d⌦ is defined in Eq. (3.8).

Following the above footsteps, straightforward calculations lead to the following repre-
sentation of the fully di↵erential cross section for the SD qG production in nucleon-nucleon
collisions
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(2⇡)2
q(xq, µ

2)

Z
d2⇢d2⇢0 ei~(~⇢�~⇢ 0) (~⇢ · ~⇢ 0)

⇥
X
 ̂q!qG(~⇢,↵) ̂

†
q!qG(~⇢

0,↵) , (4.27)
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where a ⌘ hr2chi�1
p is the inverse proton mean charge radius squared, R is the generalised par-

ton distribution function in the projectile nucleon. In the case of di↵ractive quark excitation
we obtain
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in terms of the quark PDF q(xq, µ2) where the projectile (valence or sea) quark momentum
fraction is x1

q ⌘ xq.
The SD quark-gluon dijet production cross section in nucleon-nucleon collisions N+N !
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where q2? = �t. The momentum conservation reduces the integral over the incoming nucleon
wave function asZ
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such that the basic integrals appearing in the SD cross section
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where ~R1 ⌘ ~r12, ~R2 ⌘ ~r13, ~R3 ⌘ ~r23 = ~r13 � ~r12, can be taken fully analytically. Finally,
as usual the SD cross section is the forward limit is inversely proportional to the standard
Regge-parameterised di↵ractive t-slope, BSD(s), namely,
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where ↵0
IP = 0.25 GeV�2 and the phase space volume element d⌦ is defined in Eq. (3.8).

Following the above footsteps, straightforward calculations lead to the following repre-
sentation of the fully di↵erential cross section for the SD qG production in nucleon-nucleon
collisions
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Interplay of hard  
and soft scales!

Integrating out  
all soft-scale phenomena 

over the incoming 
projectile wave function:

…and analogically 
for qqbar & GG 

dijets!
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FIG. 5: The SD-to-inclusive ratio RSD/incl(xBj, Q2) as function of Q2 for three di↵erent values of
the c.m. energy

p
s = 630 GeV, 1.8 TeV and 7 TeV. No additional phase-space correction factor

� and no division by �⇠ have been applied here.

Analogically, for the inclusive dijet cross section for the gluon Bremsstrahlung q ! qG
subprocess, we write
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where Kq!qG
incl is defined in Eq. (3.6), and x2 = Q2/sxG (see also Ref. [7]). The cross sections

for the gluon-initiated subprocesses, such as G ! qq̄ and G ! G1G2, can be obtained in
complete analogy to the above expressions, except that the (anti)quark densities are replaced
by the gluon one.

Finally, the SD-to-inclusive ratio is written as follows

RSD/incl =
1
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, (5.11)

accounting for the proper phase space constraints. In Fig. 4 we show the SD-to-inclusive
ratio RSD/incl computed by using Eq. (5.11) as function of xBj variable for three di↵erent
values of the hard scale Q2 = 102, 202 and 402 GeV2 and compared to the corresponding
CDF Run II data [39].

The energy and hard scale dependences of the SD-to-inclusive ratio RSD/incl are typ-
ically considered to be an important qualitative measure of the di↵ractive factorisation
breaking. Similarly to the SD Drell-Yan [6, 7] and gauge boson [8] production cases, an
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Scale and energy dependence 
driven by linear (in r) dependence of the diffractive amplitude 

is similar to that of Drell-Yan!



Conclusions

✓    The dipole picture enables to visualise the dominant configurations in 
diffractive reactions such as diffractive DIS in ep collisions, as well as 
diffractive Drell-Yan and di-jets production 

✓     In DDIS, the dominant fluctuations are soft, arising from the aligned-jets 
configurations, yielding the same scale dependence as for the inclusive DIS. 

✓     In diffractive NN collisions, the hadron-induced diffraction is driven by a 
different mechanism: such processes receive mixed (semi-hard/semi-soft) 
dominant contributions due to an interplay of hard and soft fluctuations from 
the hadron-scale destructively interfering projectile dipoles in the incoming 
hadron.


