

Constraining sleptons at the LHC in a supersymmetric low-scale seesaw scenario

Nhell Cerna V.

HEP - PUCP

Pontificia Universidad Católica del Perú

November 26, 2018

Standard particles

Standard particles

- Solves quadratic divergences
- Predicts new particles (DM canditate).

Standard particles

- Solves quadratic divergences
- Predicts new particles (DM canditate).

Standard particles

- Solves quadratic divergences
- Predicts new particles (DM canditate).

Standard particles

- Solves quadratic divergences
- Predicts new particles (DM canditate).

Standard particles

- Solves quadratic divergences
- Predicts new particles (DM canditate).

Standard particles

Supersymmetry particles

- Solves quadratic divergences
- Predicts new particles (DM canditate).

The model predicts:

Spín $\frac{1}{2}$ \leftrightarrow Spín 0

Spín 1 or 0 \leftrightarrow Spín $\frac{1}{2}$

Standard particles

Supersymmetry particles

Neutralinos

- Solves quadratic divergences
- Predicts new particles (DM canditate).

The model predicts:

 $Spin \frac{1}{2} \quad \leftrightarrow \quad Spin \ 0$

 $Spin \ 1 \ or \ 0 \quad \leftrightarrow \quad Spin \ \frac{1}{2}$

Seesaw Mechanism

Seesaw mechanism.

This mechanism allows us to give mass to the neutrinos of the standard model, from the addition of new neutrinos (right handed neutrinos).

The addition of this mechanism to the MSSM implies:

 $v_R \quad \Leftrightarrow \quad ilde{v}_R$

R-Neutrino R-sneutrino

Standard particles

Supersymmetry particles

 v_R

 $ilde{v}_R$

Spín ½

Spín 0

*The work is concentrated

in the sleptons sector

MSSM + SeeSaw

Standard particles

H⁰

Supersymmetry particles

 v_R

 \iff

 $ilde{v}_R$

Spín ½

Spín 0

*The work is concentrated

in the sleptons sector

MSSM + SeeSaw

Standard particles

H⁰ Η± W±

Supersymmetry particles

 v_R $\stackrel{<}{<}$ Spín $\frac{1}{2}$

R-Sneutrinos

Naturalness

By naturalness arguments, the μ term was kept relatively small, such that the lightest neutralinos were higgsino-like $(\tilde{\chi})$.

This means:

$$\mu \ll M_{1,2} \Rightarrow m_{\tilde{\chi}} \approx m_{\tilde{\chi}_{1,2}^0} \approx m_{\tilde{\chi}_1^{\pm}}$$

In our work, we choose:

$$\mu \leq 400 \; GeV$$

Usually in the mssm, the lightest particle is the neutralino,

$$\tilde{\chi}^0$$

Usually in the mssm, the lightest particle is the neutralino,

$$\tilde{\chi}^0$$

but in our model, the lightest could be the R-sneutrino.

$$ilde{v}_R$$

Usually in the mssm, the lightest particle is the neutralino,

$$\tilde{\chi}^0$$

but in our model, the lightest could be the R-sneutrino.

$$ilde{v}_R$$

R-Sneutrino like LSP (Lightest and more stable particle)

In our model we consider the following cases:

$$m_{\tilde{v}_R} < m_{\tilde{\chi}} < m_{\tilde{l}}$$

$$m_{\tilde{v}_R} < m_{\tilde{l}} < m_{\tilde{\chi}}$$

Usually in the mssm, the lightest particle is the neutralino,

$$\tilde{\chi}^0$$

but in our model, the lightest could be the R-sneutrino.

$$ilde{v}_R$$

R-Sneutrino like LSP (Lightest and more stable particle)

In our model we consider the following cases:

$$m_{\tilde{v}_R} < m_{\tilde{\chi}} < m_{\tilde{l}}$$

phenomenology with higgsino NLSP

$$m_{\tilde{v}_R} < m_{\tilde{l}} < m_{\tilde{\chi}}$$

Usually in the mssm, the lightest particle is the neutralino,

$$\tilde{\chi}^0$$

but in our model, the lightest could be the R-sneutrino.

$$ilde{v}_R$$

R-Sneutrino like LSP (Lightest and more stable particle)

In our model we consider the following cases:

$$m_{\tilde{v}_R} < m_{\tilde{\chi}} < m_{\tilde{l}}$$

phenomenology with higgsino NLSP

$$m_{\tilde{v}_R} < m_{\tilde{l}} < m_{\tilde{\chi}}$$

phenomenology with slepton NLSP

Production of supersymmetric particles

Production of supersymmetric particles

The best way to study the properties of R-sneutrinos \tilde{v}_R , it is through decay in cascade of heavy particles, like as L-sleptons and higgsinos (neutralinos y charginos).

For that, we have to understand how these particles are produced.

for example:

Production of supersymmetric particles

The best way to study the properties of R-sneutrinos \tilde{v}_R , it is through decay in cascade of heavy particles, like as L-sleptons and higgsinos (neutralinos y charginos).

For that, we have to understand how these particles are produced.

for example:

Electro-Weak Drell-Yan processes.

Charginos production

$$p p \to \tilde{\chi}^+ \tilde{\chi}^-, \, \tilde{\chi}^\pm \to l^\pm \, \tilde{v}_R^{(*)}$$

- Excluded
- Allowed
- Ambiguous

$$m_{\tilde{v}_R} < m_{\tilde{\chi}} < m_{\tilde{l}}$$

• Sleptons:

$$\tilde{l}_L^- \to \tilde{\chi}^0 l^-$$

$$\tilde{\chi}^0 \to \tilde{v}_R v_l$$

$$m_{\tilde{v}_R} < m_{\tilde{\chi}} < m_{\tilde{l}}$$

• L-Sneutrinos:

$$\tilde{v}_L \to \tilde{\chi}^+ l^-$$

Charginos:

$$\tilde{\chi}^- \to \tilde{v}_R l^-$$

 $m_{\tilde{v}_R} < m_{\tilde{\chi}} < m_{\tilde{l}}$

L-Sneutrinos:

$$\tilde{v}_L \to \tilde{\chi}^+ l^-$$

Charginos:

$$\tilde{\chi}^- \to \tilde{v}_R l^-$$

Signal

$$p \, p \to \tilde{l}_L^- \tilde{v}_L^* \to 3l + E_{Tmiss}$$

$$p \, p \to \tilde{l}_L^- \tilde{v}_L^* \to 3l + E_{Tmiss}$$

$$m_{\tilde{\chi}^0} = m_{\tilde{v}_R + 25 GeV}$$

- Allowed
- Ambiguous

N. Cerna-Velazco, T. Faber, J.Jones, W. Porod DOI 10.1140/epjc/s10052-017-5231-9

Slepton NLSP

$$m_{\tilde{v}_R} < m_{\tilde{l}} < m_{\tilde{\chi}}$$

• Sleptons:

$$\tilde{l}_L^- \to 2j\tilde{v}_L$$

• L-Sneutrinos:

$$\tilde{v}_L \to \tilde{v}_R h^0$$

Slepton NLSP

 $m_{\tilde{v}_R} < m_{\tilde{l}} < m_{\tilde{\chi}}$

Signal $p\, p \to \tilde{l}_L^- \tilde{v}_L^* \to 2h^0 + j's + E_{Tmiss}$

• Sleptons:

$$\tilde{l}_L^- \to 2j\tilde{v}_L$$

L-Sneutrinos:

$$\tilde{v}_L \to \tilde{v}_R h^0$$

Slepton NLSP

$$p p \rightarrow \tilde{l}_L^- \tilde{v}_L^* \rightarrow 2h^0 + j's + E_{Tmiss}$$

 $m_{\tilde{\chi}} = 400 \, GeV$

- Allowed
- Ambiguous

N. Cerna-Velazco, T. Faber, J.Jones, W. Porod DOI 10.1140/epjc/s10052-017-5231-9

 $m_{\tilde{v}_R} < m_{\tilde{\chi}} < m_{\tilde{l}}$

Conclusions

- We observed that phenomenology of the R-Sneutrino depends on the mass of sleptons and higgisinos.
- We see that, for vanishing $m_{\tilde{v}_R}$, the bound on $m_{\tilde{\chi}}$ can be as large as 375 GeV. For relatively small values of $m_{\tilde{\chi}}$, one finds that R-sneutrino masses lighter than $m_{\tilde{\chi}}$ 75 GeV are ruled out, with the allowed region increasing for $m_{\tilde{\chi}} \gtrsim$ 250 GeV.
- We found that, as long as $m_{\tilde{\chi}} < m_{\tilde{l}}$, we can exclude slepton masses to a maximum of 575 GeV. For lower values of slepton mass, the R-sneutrino masses can be excluded up to about 200 GeV.
- In case $m_{\tilde{l}} < m_{\tilde{\chi}}$, constraints became very weak, as final states were either too soft, or not probed by current searches.

Backup

Seesaw mechanism

We introduce new states (right-handed field)

$$\mathcal{L}_{seesaw} = \mathcal{L}_{SM} - m_D \bar{v}_R v_L + \frac{1}{2} m_R \, \bar{v}_R^c \, v_R + h.c.$$

Eventually we will get

$$\mathcal{L}_{mass}^{v} = \frac{1}{2} \bar{N}_{L}^{c} M N_{L} + h.c.$$
 $N_{L} = \begin{pmatrix} v_{L} \\ v_{R}^{C} \end{pmatrix}$

Seesaw mechanism

We introduce new states (right-handed field)

$$\mathcal{L}_{seesaw} = \mathcal{L}_{SM} - m_D \bar{v}_R v_L + \frac{1}{2} m_R \, \bar{v}_R^c \, v_R + h.c.$$

Eventually we will get

$$\mathcal{L}_{mass}^{v} = \frac{1}{2} \bar{N}_{L}^{c} M N_{L} + h.c.$$
 $N_{L} = \begin{pmatrix} v_{L} \\ v_{R}^{C} \end{pmatrix}$

$$M = \begin{pmatrix} 0 & m_D \\ m_D & m_R \end{pmatrix}$$
 $m_1 \simeq \frac{m_D^2}{m_R}$ $m_2 \simeq m_R$

R-Sneutrino LSP y light higgsinos

R-Sneutrino LSP and light higgsinos

N. Cerna-Velazco, T. Faber, J.Jones, W. Porod DOI 10.1140/epjc/s10052-017-5231-9

R-Sneutrino LSP and heavy higgsinos

R-Sneutrino LSP and heavy Higgsinos

N. Cerna-Velazco, T. Faber, J.Jones, W. Porod DOI 10.1140/epjc/s10052-017-5231-9