Phenomenological intro	Why AdS/QCD to model QGP?	Photons in QGP	Trailing string as a parton in the QGP	Results	Conclusions and Outlook
00	00	0	0000	00	00

Instituto de Física y Astronomía Facultad de Ciencias, Universidad de Valparaíso, Chile.

Dirección: Av. Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile. Teléfono: +56 32 2508426

Drag Force in AdS/QCD Models

Miguel Ángel Martín Contreras With A. Vega

Physics and Astronomy Institute, Universidad de Valparaíso, Chile

2018

Phenomenological intro	Why AdS/QCD to model QGP?	Photons in QGP	Trailing string as a parton in the QGP	Results	Conclusions and Outlook
00	00	0	0000	00	00

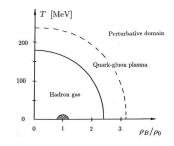
- Phenomenological intro
- 2 Why AdS/QCD to model QGP?
- Photons in QGP
- Trailing string as a parton in the QGP
- **6** Results
- **6** Conclusions and Outlook

AdS/CFT in a sentence

A possible definition

AdS/CFT correspondence can be defined as a tool to explore non-perturbative physics using gravity.

...or if you want...


AdS/CFT is the duality that connects a d + 1-QFT at strong coupling with d + 2-gravity at weak coupling.

Both are valid *intuitive* definitions.

QGP Generalities Generalities

- It is a deconfined state of QCD created in heavy ion collisions, where partons are almost free.
- It behaves as a perfect fluid, i.e., $\frac{S}{V} = \frac{1}{4\pi}$ and $\eta = 0$.
- It is a strongly coupled system.
- It is expected to be formed at $T_c = 175$ MeV, when light mesons melt down.
- Theoretical approaches: lattice QCD, real time methods, bootstrap models, χ-PT, Thermal Loop and other effective lagrangians.

- E. Shuryak, 2004. J. Adams et. al. (RHIC), 2005.
- S. S. Adler et. al. (RHIC), 2007.

AdS/QCD models

General Idea

AdS/QCD models are a bottom-up approach to introduce confinement into holography by including a form to break softly the conformal invariance.

These approaches have been successful to describe: Finite T and μ :

At $T = \mu = 0$

- Hadronic spectra
- EM form factors
- Decay constants for heavy mesons
- Structure functions.

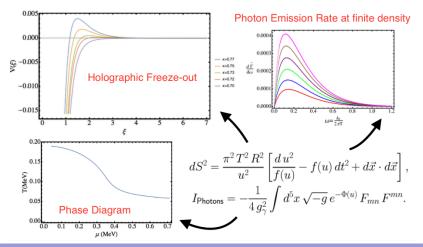
۲

Confinement/Deconfinement phase Transitions.

- Melting of Hadrons at finite T and finite μ
- In-medium (Nuclear) properties
- QCD Thermodynamics

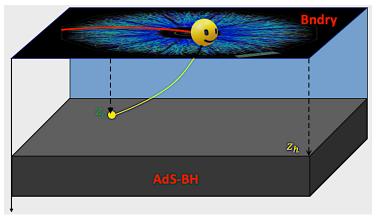
Phenomenological intro	Why AdS/QCD to model QGP?	Photons in QGP	Trailing string as a parton in the QGP	Results	Conclusions and Outlook
00	0•	0	0000	00	00

and...QGP?


A natural question arises at this point: Could it be possible to describe QGP with AdS/QCD models?

In the case of photon emission, it has been possible to describe the photon emission rate (Y. Y. Bu, 2013).

Thus, it is expected these models could work describing QGP.


Phenomenological intro	Why AdS/QCD to model QGP?	Photons in QGP	Trailing string as a parton in the QGP	Results	Conclusions and Outlook
00	00	•	0000	00	00

Example: Holographic (toy) model for emitted photons in the fireball

Phenomenological intro	Why AdS/QCD to model QGP?	Photons in QGP	Trailing string as a parton in the QGP	Results	Conclusions and Outlook
00	00	0	●000	00	00

Trailing strings as moving quarks

Figure 2: Quark moving across the QGP medium and its holographic description

Holographic Model

For simplicity, we will asume that the quark is moving on the x_1 -direction on the boundary with a velocity $v \hat{x}_1$. So, in the static gauge, we can write

$$x_{1}(z)=v t+\xi(z)$$

Under this gauge choice, the embedding metric $\gamma_{\textit{ab}}$ emerges as

$$dS^{2} = \frac{R^{2}}{z^{2}} \left[-f\left(1 - \frac{v^{2}}{f}\right) dt^{2} + \frac{1}{f} \left(1 + f\xi'^{2}\right) dz^{2} + 2v\xi' dt dz \right] = \gamma_{ab} d\sigma^{a} d\sigma^{b}$$

The worldsheet metric is defined by the coordinate choice: $\sigma_a = \{t, z\}$. From this metric we will obtain an expression for the drag force in the soft wall model context.

Phenomenological intro V	Why AdS/QCD to model QGP?	Photons in QGP	Trailing string as a parton in the QGP	Results	Conclusions and Outlook
00 0	00	0	0000	00	00

Our start point will be the Nambu Goto action defined for the embedding metric given above:

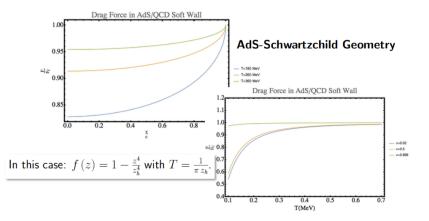
$$\begin{split} I_{\rm NG} &= -\frac{1}{2 \,\pi \,\alpha'} \,\int d^2 \sigma \, e^{-\Phi(z)} \sqrt{-\det \gamma} \\ &= -\frac{1}{2 \,\pi \,\alpha'} \int d^2 \sigma \, \frac{e^{2 \,B(z)}}{z^2} \sqrt{1 - \frac{v^2}{f} + f \,\xi'^2} \end{split}$$

where $B(z) = -\frac{\Phi(z)}{2} + \log \frac{R}{z}$ and $\Phi(z) = \kappa^2 z^2$ is the static dilaton profile. The Drag Force comes from the canonical conjugate momentum $\Pi_{x_1}^z$ as follows:

$$F_{\text{Drag}} = \Pi_{x_1}^z = -\frac{1}{2 \pi \alpha'} \frac{e^{2B(z)}}{z^2} \frac{\xi' f}{\sqrt{1 - \frac{v^2}{f} + f \xi'^2}} = -\frac{e^{2B(z_c)}}{2 \pi \alpha' z_c^2} \sqrt{f(z_c)},$$
(1)

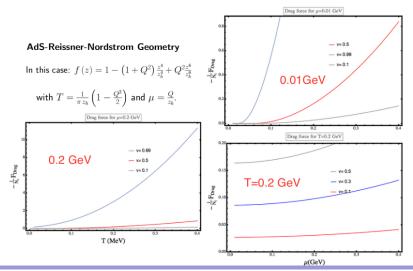
where z_c is critical point that defines the region in the bulk where the string is stretching, and it is defined as $v^2 = f(z_c)$.

00 00	0	000●	00	00


Some Remarks

- This z_c defined by the kinematical constrain $f(z_c) = v^2$. i.e. it depends on the thermal conditions for the plasma modeled by the metric.
- *z_c* can be considered as the "probe" that captures the medium effect on the moving quark since the string end is affected by the BH gravity.

Now, we will focus on two different geometric backgrounds: AdS-Schwartzchild and AdS-Reissner-Nordstrom geometries to see the thermal and chemical potential effects.


Phenomenological intro	Why AdS/QCD to model QGP?	Photons in QGP	Trailing string as a parton in the QGP	Results	Conclusions and Outlook
00	00	0	0000	•0	00

AdS-Schwartzschild background

Phenomenological intro	Why AdS/QCD to model QGP?	Photons in QGP	Trailing string as a parton in the QGP	Results	Conclusions and Outlook
00	00	0	0000	0.	00

AdS-Reissner Nordstrom background

Physics and Astronomy Institute, Universidad de Valparaíso, Chile

Phenomenological intro	Why AdS/QCD to model QGP?	Photons in QGP	Trailing string as a parton in the QGP	Results	Conclusions and Outlook
00	00	0	0000	00	•0

Conclusions

- AdS/QCD soft wall model provides a simple framework to study the QGP phenomenology at finite T and finite μ .
- Holographic drag force is enhanced in a dense medium (T. Hirano, 2018).
- Medium properties could be studied by fixing properly the kinematical constrain $f(z_c) = v^2$.

Future work

Things to do next:

- To calculate jet quenching.
- To calculate other thermodynamical quantities as entropy.
- To introduce anisotropies.
- To use other BH backgrounds as the non-commutative ones.

Phenomenological intro	Why AdS/QCD to model QGP?	Photons in QGP	Trailing string as a parton in the QGP	Results	Conclusions and Outlook
00	00	0	0000	00	0•

Thank you!