Contribution ID: 61 Type: Poster (Theory)

An alternative explanation to accelerating Universe without Λ in concordance with the last H_0 measured value

We perform an MCMC analysis with the most updated SN-Ia catalog using an alternative cosmological model named Delta Gravity. This model is based on a new Einstein-Hilbert action based on a new symmetry symbolized as $\tilde{\delta}$. This theory predicts an accelerating Universe without the need to introduce a Λ by hand in the equations.

The equations of motion that describe the expansion of the universe depend on two free parameters: L_2 and C that are found by the MCMC simulation. Using these parameters we predicted cosmological parameters such as the Hubble Constant H_0 , the age of the universe and the deceleration parameter q_0 .

The most significant result is that Delta Gravity predicts that H_0 is 74.47 ± 1.63 km/(s Mpc). This value is in concordance with the last measurement of the H_0 local value, 73.83 ± 1.48 km/(s Mpc) (Riess 2018). This result is very important because could be an explanation to the H_0 tension today.

arXiv

https://arxiv.org/pdf/1704.02888.pdf

Authors: SAN MARTÍN, Marco; SUREDA HERNANDEZ, Joaquin (Pontificia Universidad Catolica de Chile); Prof.

ALFARO, Jorge (PUC, Chile)

Presenter: SUREDA HERNANDEZ, Joaquin (Pontificia Universidad Catolica de Chile)

Session Classification: Poster Session

Track Classification: Cosmology