Delta Gravity: A possible explanation to *Dark Energy* from modified General Relativity

Marco San Martín H.

Astrophysics PhD student

Pontificia Universidad Católica de Chile

Standard Cosmological Model: ACDM

Based on General Relativity:

$$S = \int \left[\frac{1}{2\kappa} \left(R - 2\Lambda\right) + \mathcal{L}_{\mathrm{M}}\right] \sqrt{-g} \,\mathrm{d}^{4}x$$

Einstein Field Equations:
$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^{4}}T_{\mu\nu}$$

Standard Cosmological Model: ACDM

Friedmann equations:

Standard cosmological model: ACDM

► Λ + CDM

Dark Energy

Dark Matter

Observational evidence?

How well does it work?

Hubble constant from SN-Ia vs PlanckIs this correct?

The Last H₀ measurement, 2018

NEW PARALLAXES OF GALACTIC CEPHEIDS FROM SPATIALLY SCANNING THE HUBBLE SPACE TELESCOPE: IMPLICATIONS FOR THE HUBBLE CONSTANT

ADAM G. RIESS,^{1,2} STEFANO CASERTANO,^{1,2} WENLONG YUAN,^{2,3} LUCAS MACRI,⁴ JAY ANDERSON,¹ JOHN W. MACKENTY,¹ J. BRADLEY BOWERS,² KELSEY I. CLUBB,⁵ ALEXEI V. FILIPPENKO,^{5,6} DAVID O. JONES,² AND BRAD E. TUCKER⁵

73.45±1.66 km/(Mpc s)

Parallax measurements of galactic cepheids; the value suggests a discrepancy with CMB measurements at the 3.7σ level. The uncertainty is expected to be reduced to below 1% with the final release of the Gaia catalog.

From CMB data, Planck 2015

Table 4. Parameter 68 % confidence limits for the base Λ CDM model from *Planck* CMB power spectra, in combination with lensing reconstruction ("lensing") and external data ("ext", BAO+JLA+ H_0). While we see no evidence that systematic effects in polarization are biasing parameters in the base Λ CDM model, a conservative choice would be to use the parameter values listed in Column 3 (i.e., for TT+lowP+lensing). Nuisance parameters are not listed here for brevity, but can be found in the extensive tables on the Planck Legacy Archive, http://pla.esac.esa.int/pla; however, the last three parameters listed here give a summary measure of the total foreground amplitude (in μ K²) at $\ell = 2000$ for the three high- ℓ temperature power spectra used by the likelihood. In all cases the helium mass fraction used is predicted by BBN from the baryon abundance (posterior mean $Y_P \approx 0.2453$, with theoretical uncertainties in the BBN predictions dominating over the *Planck* error on $\Omega_h h^2$). The Hubble constant is given in units of km s⁻¹ Mpc⁻¹, while r_* is in Mpc and wavenumbers are in

			— <u>or</u>	ror.	27	~ ====
Parameter	TT+lowP 68 % limits	TT+lowP+lensing 68 % limits	TT+lowP 68 4		J ./	P+lensing+ext mits
Planck 20)15		2227 ± 0.00020	0.02225 ± 0.00016	0.02226 ± 0.00016	0.02230 ± 0.00014
$\frac{1106 \pm 0.00}{1106 \pm 0.00}$						
67 81+0 9	97 Mnc	/(Km s	.067 ± 0.011	IN-IA ZU	JIO	
		<u>/ (IXIII 3</u>	.064 ± 0.024 7	2 15-1	66 Mpc	/(kmc)
n _s		0.9677 ± 0.0060	0.9681 ± 0.004	J.4 JII.	oo mpc	$(\mathbf{N} \mathbf{I} \mathbf{S})$
H_0	67.31 ± 0.96	67.81 ± 0.92	67.90 ± 0.55	67.27 ± 0.66	67.51 ± 0.64	67.74 ± 0.46
<u>Φ</u> Λ	0.685 ± 0.013	0.692 ± 0.012	0.6935 ± 0.0072	0.6844 ± 0.0091	0.6879 ± 0.0087	0.6911 ± 0.0062
Ω _m	0.315 ± 0.013	0.308 ± 0.012	0.3065 ± 0.0072	0.3156 ± 0.0091	0.3121 ± 0.0087	0.3089 ± 0.0062
$\Omega_{ m m}h^2$	0.1426 ± 0.0020	0.1415 ± 0.0019	0.1413 ± 0.0011	0.1427 ± 0.0014	0.1422 ± 0.0013	0.14170 ± 0.00097
$\Omega_{\rm m}h^3$	0.09597 ± 0.00045	0.09591 ± 0.00045	0.09593 ± 0.00045	0.09601 ± 0.00029	0.09596 ± 0.00030	0.09598 ± 0.00029
σ_8	0.829 ± 0.014	0.8149 ± 0.0093	0.8154 ± 0.0090	0.831 ± 0.013	0.8150 ± 0.0087	0.8159 ± 0.0086

Delta Gravity

We obtain the new action by extension of the new symmetry in EH action

$$S_{0} = \int d^{4}x \sqrt{-g} \left(\frac{R}{2\kappa} + L_{M}\right) \implies S = \int d^{4}x \sqrt{-g} \left(\frac{R}{2\kappa} + L_{M} - \frac{\kappa_{2}}{2\kappa} \left(G^{\alpha\beta} - \kappa T^{\alpha\beta}\right) \tilde{g}_{\alpha\beta} + \kappa_{2} \tilde{L}_{M}\right)$$

Delta Gauge Theories (extension by the new symmetry).

- $\blacktriangleright g_{uv} \rightarrow \tilde{g}_{uv}$
- We have two new kind of fields:
 - Delta Matter
 - Delta Radiation

https://arxiv.org/pdf/1210.6107.pdf

Some useful equations

 $g_{\mu\nu}dx^{\mu}dx^{\nu} = -c^{2}dt^{2} + R^{2}(t)\left(dx^{2} + dy^{2} + dz^{2}\right),$ $\tilde{g}_{\mu\nu}dx^{\mu}dx^{\nu} = -3F_{a}(t)c^{2}dt^{2} + F_{a}(t)R^{2}(t)\left(dx^{2} + dy^{2} + dz^{2}\right).$

$$\mathbf{g}_{\mu\nu} = g_{\mu\nu} + \tilde{g}_{\mu\nu} = -c^2(1+3F_a(t))dt^2 + (1+F_a(t))R^2(t)\left(dx^2 + dy^2 + dz^2\right)$$

The normalized effective scale factor :

$$Y_{DG}(L_2, C, Y) = \frac{Y}{R_{DG}(t_0)} \sqrt{\frac{1 - L_2 \frac{Y}{3}\sqrt{Y + C}}{1 - L_2 Y\sqrt{Y + C}}}$$

The effective metric is:

To fit SN data:

$$\mu = m - M = 5 \log_{10} \left(\frac{d}{10 \,\mathrm{pc}} \right) \quad d_L(z, L_2, C) = c \frac{(1+z)\sqrt{C}}{100\sqrt{h^2 \Omega_{r0}}} \int_{Y(t_1)}^1 \frac{Y}{\sqrt{Y+C}} \frac{dY}{Y_{DG}(t)}$$

¿Why Delta Gravity?

DG PREDICTS ACCELERATING UNIVERSE WITHOUT DARK ENERGY!!!!!!

Results from MCMC (Markov Chain Monte Carlo):

WITH THE TWO FREE PARAMETERS FITTED:

 L_2 and C

WE CAN PREDICT COSMOLICAL INTERESTING VALUES, LIKE H_0

Good H₀ Value in Delta Gravity

- *H*₀ is higher than LCDM with
 Planck data
- It is in concordance with the last independent-model measurement
- The <u>acceleration is naturally</u> <u>produced from the geometry</u> <u>of the Model</u>, and it is not imposed using a constant, like Λ

This is not the end...

Thanks!

- We are working on obtain the CMB Power Spectrum
- We want to fit the CMB and compare with SN-Ia data

https://arxiv.org/abs/1704.02888

 $ilde{\delta}$ Gravity, $ilde{\delta}$ matter and the accelerated expansion of the Universe

Jorge Alfaro, Pablo González

https://arxiv.org/abs/1811.05828

An accelerating Universe without Λ in concordance with the last H_0 measured value

Jorge Alfaro, Marco San Martin, Joaquin Sureda