

Visible neutrino decay and matter effects at future long-base line experiments

Anthony Calatayud

Based on EPJC 78:809

In collaboration with: M. V. Ascencio Sosa, A. M. C. C., A. M. Gago, J. Jones Pérez

Pontificia Universidad Católica del Perú

High Energy Group – PUCP

Lima - November 2018

XII Latin American Symposium of High Energy Physics (SILAFAE)

Introduction

SILAFAE 2018

Beyond Standard Model: Standard Nuetrino Oscillation (vacuum and matter) Neutrino Decay (invisible and visible) Majoron Model: $\mathcal{L}_{int} = \frac{\underset{j}{\underbrace{g_s}}_{ij}}{2} \bar{\nu}_i \nu_j J + i \frac{\underset{j}{\underbrace{g_p}}_{ij}}{2} \bar{\nu}_i \gamma_5 \nu_j J$ There are two modes: $\nu_i \rightarrow \nu_j + J$ or $\nu_i \rightarrow \bar{\nu}_j + J$

If the neutrino resulting from decay is sterile we have **invisible decay**, but if the resulting neutrino is active we have **visible decay**.

Neutrino oscillation including effects of matter and decay

Neutrino oscillation including effects of matter and decay

SILAFAE 2018 Acts of matter and decay

Neutrino oscillation including effects of matter and decay

Visible Decay Probability:

$$P_{\text{vis}}(E_{\alpha}, E_{\beta}) = \int d\ell \left| \sum_{I=\tilde{1}}^{\tilde{3}} \left(\tilde{U}^{(r)} \right)_{I\alpha}^{-1} \exp\left[-i\frac{\tilde{m}_{I}^{2}\ell}{2E_{\alpha}} \right] \exp\left[-\frac{\tilde{\alpha}_{I}\ell}{2E_{\alpha}} \right] \sum_{i=2}^{3} \sum_{j=1}^{i-1} \tilde{C}_{Ii}^{(r)} \sqrt{\frac{d}{dE_{\beta}}} \Gamma_{\nu_{i}^{r} \to \nu_{j}^{s}}(E_{\alpha}) \right. \\ \left. \times \sum_{J=\hat{1}}^{\hat{3}} \left(\hat{C}^{(s)} \right)_{jJ}^{-1} \exp\left[-i\frac{\hat{m}_{J}^{2}(L-\ell)}{2E_{\beta}} \right] \exp\left[-\frac{\hat{\alpha}_{J}(L-\ell)}{2E_{\beta}} \right] \hat{U}_{\beta J}^{(s)} \right|^{2}$$

Where: - Before decay $\tilde{C}_{Ii}^{(r)} = \sum_{\rho=e,\mu,\tau} \tilde{U}_{\rho I}^{(r)} (U_0)_{\rho i}^{(r)*}$ - After decay $\hat{C}_{jJ}^{(s)} = \sum_{\rho=e,\mu,\tau} \hat{U}_{\rho J}^{(s)} (U_0)_{\rho j}^{(s)*}$

A. M. Gago, R. A. Gomes, A. L. G. Gomes, et al., JHEP 11, 022 (2017), 1705.03074

Setting and parameters values

SILAFAE 2018

Long base-line experiments:

Parameter	Value	Parameter	Value
$ heta_{12}/^{\circ}$	33.56	$\delta_{CP}/^{\circ}$	-90
$ heta_{23}/^{\circ}$	41.6	$\frac{\Delta m_{12}^2}{10^{-5} {\rm eV}^2}$	7.50
$ heta_{13}/^{\circ}$	8.46	$\frac{\Delta m_{13}^2}{10^{-3} \mathrm{eV}^2}$	2.524

JHEP 01 (2017) 087 [arXiv:1611.01514]

Flux x Cross Section:

$$(\Phi \times \sigma)_{\beta} \equiv \sum_{s} \sigma_{\beta}^{s, \text{CC}}(E_{\beta}) \frac{d\Phi_{\beta}^{(s)}}{dE_{\beta}}$$

 $(\Phi$

then,

Define:	
	η
$x_{31} =$	= —

 m_3 \imath_3 m_1 $m_{lightest}$

- If $m_1 = 0.07 \text{ eV}$: $x_{31} \rightarrow 1$ - If $m_1 \rightarrow 0 \text{ eV}$: $x_{31} \rightarrow \infty$

Baseline: 7650 km Matter density: 4.7 g/cm³

Power:	1.47 MW (Main Injector)
Far Detector:	(LArTPC), 40kt
POT:	1.1×10^{21}
Mode:	Forward Horn Current – FHC (u)
	Reverse Horn Current – RHC $(\bar{\nu})$
Time:	3.5 years in each mode (7 years in total)

Sensitivity and Parameter Fits at DUNE SILAFAE 2018

Chi-square definition

$$\chi^{2}(\theta_{23}, \delta_{\rm CP}, \alpha_{3}, \theta_{23}^{\rm true}, \delta_{\rm CP}^{\rm true}, \alpha_{3}^{\rm true}) = \sum_{i}^{\rm bins} \frac{\left(N_{i}\left(\theta_{23}, \delta_{\rm CP}, \alpha_{3}\right) - N_{i}\left(\theta_{23}^{\rm true}, \delta_{\rm CP}^{\rm true}, \alpha_{3}^{\rm true}\right)\right)^{2}}{N_{i}\left(\theta_{23}^{\rm true}, \delta_{\rm CP}^{\rm true}, \alpha_{3}^{\rm true}\right)}$$

Sensitivity of α_3 , we make $\theta_{23} = \theta_{23}^{\text{true}}$, $\delta_{CP} = \delta_{CP}^{\text{true}}$ and $\alpha_3^{\text{true}} = 0 \text{ eV}^2$. Marginalization:

$$\chi^2(\theta_{23}^{\text{true}}, \delta_{\text{CP}}^{\text{true}}, \alpha_3, \theta_{23}^{\text{true}}, \delta_{\text{CP}}^{\text{true}}, 0)\big|_{\min \delta_{\text{CP}}^{\text{true}}}$$

and

$$\chi^2(\theta_{23}^{\text{true}}, \delta_{\text{CP}}^{\text{true}}, \alpha_3, \theta_{23}^{\text{true}}, \delta_{\text{CP}}^{\text{true}}, 0)\Big|_{\min\theta_{23}^{\text{true}}}$$

Sensitivity and Parameter Fits at DUNE

SILAFAE 2018

Sensivity Plots

Sensitivity and Parameter Fits at DUNE

SILAFAE 2018

Sensivity Plots

Sensitivity and Parameter Fits at DUNE

SILAFAE 2018

Conclusions

SILAFAE 2018

> The study of $\Phi imes \sigma$ show:

> We found the sensitivity of DUNE depends on $m_{lightest}$ in the following scenarios:

$$x_{31} \to 1 \begin{cases} \alpha_3^{(s)} < 2.8 \times 10^{-6} \text{ eV}^2 \\ \alpha_3^{(p)} < 2.0 \times 10^{-6} \text{ eV}^2 \end{cases}$$
$$x_{31} \to \infty \begin{cases} \alpha_3^{(s,p)} < 3.2 \times 10^{-6} \text{ eV}^2 \end{cases}$$

> The fit of θ_{23} and δ_{CP} , assuming SO, with data generated for FD, it is found that the allowed regions will change towards larger values of θ_{23} , and toward conservation CP-values of δ_{CP} .

¡Thank you!

Rules used in the Event Simulation

SILAFAE 2018

Rules for \mathcal{V}_e appearence

		ν_e appearance, FHC Flux	$\bar{\nu}_e$ appearance, RHC Flux	
Signal	CC:	$(\nu_{\mu} \rightarrow \nu_{e})_{ID} + (\nu_{\mu} \rightarrow \nu_{e})_{VD}$	$(\nu_{\mu} \rightarrow \nu_{e})_{ID} + (\bar{\nu}_{\mu} \rightarrow \nu_{e})_{VD}$	
		$+(ar{ u}_{\mu} ightarrow u_{e})_{VD}$	$+(u_{\mu} ightarrow u_{e})_{VD}$	
	CC:	$(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})_{ID} + (\nu_{\mu} \rightarrow \bar{\nu}_{e})_{VD}$	$(\bar{\nu}_{\mu} \to \bar{\nu}_{e})_{ID} + (\bar{\nu}_{\mu} \to \bar{\nu}_{e})_{VD}$	
		$+(\bar{ u}_{\mu} ightarrowar{ u}_{e})_{VD}$	$+(u_{\mu} ightarrow ar{ u}_{e})_{VD}$	
Background	CC:	$(u_e ightarrow u_e)_{ID}$	$(\nu_e o \nu_e)_{ID}$	
	CC:	$(\bar{ u}_e ightarrow \bar{ u}_e)_{ID}$	$(\bar{\nu}_e \to \bar{\nu}_e)_{ID}$	
	CC:	$(u_{\mu} ightarrow u_{\mu})_{ID} + (u_{\mu} ightarrow u_{\mu})_{VD}$	$(\nu_{\mu} \rightarrow \nu_{\mu})_{ID} + (\bar{\nu}_{\mu} \rightarrow \nu_{\mu})_{VD}$	
	CC:	$(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu})_{ID} + (\nu_{\mu} \rightarrow \bar{\nu}_{\mu})_{VD}$	$(\bar{\nu}_{\mu} \to \bar{\nu}_{\mu})_{ID} + (\bar{\nu}_{\mu} \to \bar{\nu}_{\mu})_{VD}$	
	CC:	$(\nu_{\mu} \rightarrow \nu_{\tau})_{ID} + (\nu_{\mu} \rightarrow \nu_{\tau})_{VD}$	$(\nu_{\mu} \rightarrow \nu_{\tau})_{ID} + (\bar{\nu}_{\mu} \rightarrow \nu_{\tau})_{VD}$	Missing
	CC:	$(\bar{\nu}_{\mu} \to \bar{\nu}_{\tau})_{ID} + (\nu_{\mu} \to \bar{\nu}_{\tau})_{VD}$	$(\bar{\nu}_{\mu} \to \bar{\nu}_{\tau})_{ID} + (\bar{\nu}_{\mu} \to \bar{\nu}_{\tau})_{VD}$	indentification
	NC:	$(\nu_{\mu} \rightarrow \nu_{\alpha})_{ID} + (\nu_{\mu} \rightarrow \nu_{\alpha})_{VD}$	$(\nu_{\mu} \rightarrow \nu_{\alpha})_{ID} + (\bar{\nu}_{\mu} \rightarrow \nu_{\alpha})_{VD}$	
	NC:	$(\bar{\nu}_{\mu} \to \bar{\nu}_{\alpha})_{ID} + (\nu_{\mu} \to \bar{\nu}_{\alpha})_{VD}$	$(\bar{\nu}_{\mu} \to \bar{\nu}_{\alpha})_{ID} + (\bar{\nu}_{\mu} \to \bar{\nu}_{\alpha})_{VD}$	J .

Rules for \mathcal{V}_{μ} disappearence

		ν_{μ} disappearance, FHC Flux	$\bar{\nu}_{\mu}$ disappearance, RHC Flux	
Signal	CC:	$(\nu_{\mu} \to \nu_{\mu})_{ID} + (\nu_{\mu} \to \nu_{\mu})_{VD}$	$(\nu_{\mu} \rightarrow \nu_{\mu})_{ID} + (\bar{\nu}_{\mu} \rightarrow \nu_{\mu})_{VD}$	
	CC:	$(\bar{\nu}_{\mu} \to \bar{\nu}_{\mu})_{ID} + (\nu_{\mu} \to \bar{\nu}_{\mu})_{VD}$	$(\bar{\nu}_{\mu} \to \bar{\nu}_{\mu})_{ID} + (\bar{\nu}_{\mu} \to \bar{\nu}_{\mu})_{VD}$	
Background	CC:	$(\nu_{\mu} \rightarrow \nu_{\tau})_{ID} + (\nu_{\mu} \rightarrow \nu_{\tau})_{VD}$	$(\nu_{\mu} \rightarrow \nu_{\tau})_{ID} + (\bar{\nu}_{\mu} \rightarrow \nu_{\tau})_{VD}$	Missing
	CC:	$(\bar{\nu}_{\mu} \to \bar{\nu}_{\tau})_{ID} + (\nu_{\mu} \to \bar{\nu}_{\tau})_{VD}$	$(\bar{\nu}_{\mu} \to \bar{\nu}_{\tau})_{ID} + (\bar{\nu}_{\mu} \to \bar{\nu}_{\tau})_{VD}$	
	NC:	$(\nu_{\mu} \rightarrow \nu_{\alpha})_{ID} + (\nu_{\mu} \rightarrow \nu_{\alpha})_{VD}$	$(\nu_{\mu} \to \nu_{\alpha})_{ID} + (\bar{\nu}_{\mu} \to \nu_{\alpha})_{VD}$	indentification
	NC:	$(\bar{\nu}_{\mu} \to \bar{\nu}_{\alpha})_{ID} + (\nu_{\mu} \to \bar{\nu}_{\alpha})_{VD}$	$(\bar{\nu}_{\mu} \to \bar{\nu}_{\alpha})_{ID} + (\bar{\nu}_{\mu} \to \bar{\nu}_{\alpha})_{VD}$	

Event Generation at DUNE

SILAFAE 2018

Events

Number of events of flavor β in the energy bin i, with helicity s and going through interaction $int = \{CC, NC\}$, is obtained from:

$$N_{i,\beta}^{(s),\text{int}} = \int dE_{\beta} K_i^{\text{int}}(E_{\beta}) \sigma_{\beta}^{s,\text{int}}(E_{\beta}) \frac{d\Phi_{\beta}^{(s)}}{dE_{\beta}}$$

where $\sigma_{eta}^{s,\mathrm{int}}(E_{eta})$ is the cross section for the interaction int , and

$$K_i^{\text{int}}(E_\beta) = \int_{E_{\text{i,min}}}^{E_{\text{i,max}}} dE_{\text{bin}} \,\epsilon_\beta^{\text{int}}(E_{\text{bin}}) \, R^{\text{int}}(E_{\text{bin}} - E_\beta)$$

Detector efficiency:

$$\epsilon_{\beta}^{\rm int}(E_{\rm bin}$$

Resolution function:

$$R^{\rm int}(E_{\rm bin} - E_{\beta})$$