AdS/QCD approach to study hadron properties in nuclear medium Alfredo Vega

Universidad deValparaíso CHILE In collaboration with M. A. Martin Contreras

SILAFAE 2018, Lima, Perú

November 29, 2018

Outline

Introduction

Nucleon properties in vacuum using an AdS/QCD model

Nucleon properties in nuclear media with an alternative AdS/QCD model

Final Comments and Conclusions

Introduction

Applicability to QCD of Gauge / Gravity ideas.¹

- N=4 SYM is different to QCD, but we can argue that in some situations both are closer. Ej: Heavy Ion Collisions.
- Gauge / Gravity ideas can be expanded in several directions. This gives us a possibility to get a field theory similar to QCD with gravity dual.
- You can use Gauge / Gravity as a nice frame to built phenomenological models with extra dimensions that reproduce some QCD facts (AdS/QCD models).
- AdS / QCD has been used in a successful way to study hadron physics at zero temperature and density, and also at finite temperature and in a dense medium.

¹e.g., see J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, Eur. Phys. J. A **35**, 81 (2008).

Introduction

In AdS / QCD models (bottom-up approach), with Asymptotically AdS metrics and a non-dynamical dilaton, it is possible to study hadrons.

Nucleon properties in vacuum using an AdS/QCD model ²

²T. Gutsche, V. E. Lyubovitskij, I. Schmidt and A. V, Phys. Rev. D 86, 036007 (2012).

***** Electromagnetic Form Factors.

Nucleon electromagnetic form factors F_1^N and F_2^N (N = p, *n* correspond to proton and neutron) are conventionally defined by the matrix element of the electromagnetic current as

 $\langle p'|J^{\mu}(0)|p\rangle = \bar{u}(p')[\gamma^{\mu}F_{1}^{N}(Q^{2}) + \frac{i\sigma^{\mu\nu}}{2m_{N}}q_{\nu}F_{2}^{N}(Q^{2})]u(p),$

where q = p' - p is the momentum transfer; m_N is the nucleon mass; F_1^N and F_2^N are the Dirac and Pauli form factors, which are normalized to electric charge e_N and anomalous magnetic moment k_N of the corresponding nucleon: $F_1^N(0) = e_N$ and $F_2^N(0) = k_N$.

In AdS / QCD models we consider $S = \int d^{d+1}x \sqrt{g} e^{-\Phi(z)} \left(\mathcal{L}_{\Psi} + \mathcal{L}_{V} + \mathcal{L}_{Int} \right),$

where

$$ds^2 = rac{1}{z^2} (\eta_{\mu
u} dx^{\mu} dx^{
u} - dz^2),$$

* Hard Wall case: $\Phi(z) = Cte$ and z between 0 and z_0 . * Soft Wall case: $\Phi(z) = \kappa^2 z^2$ and z between 0 and ∞ .

In Soft Wall case

 $f_L(z) = N_L \ (\kappa z)^{5/2} e^{-\kappa^2 z^2/2} \quad \text{and} \quad f_R(z) = N_R \ (\kappa z)^{3/2} e^{-\kappa^2 z^2/2}$

For another side, according to the AdS/CFT dictionary, the $V_{\mu}(p)$ is the source for the 4D current operator J_{μ}^{V} .

$$\left[\partial_{z}\left(\frac{e^{-\Phi}}{z}\partial_{z}\right) + \frac{e^{-\Phi}}{z}p^{2}\right]V(p,z) = 0,$$
$$V(Q,z) = \Gamma\left(1 + \frac{Q^{2}}{4\kappa^{2}}\right)U\left(\frac{Q^{2}}{4\kappa^{2}}, 0; \kappa^{2}z^{2}\right)$$

* Proton Form Factors in AdS / QCD.

$$S = \int d^{d+1}x \sqrt{g} e^{-\Phi(z)} \mathcal{L}_{Int},$$

 $F_1^p(Q^2) = C_1(Q^2) + g_v C_2(Q^2) + \eta_V^p C_3(Q^2) \quad , \quad F_2^p(Q^2) = \eta_V^p C_4(Q^2),$

where

 $C_{1}(Q^{2}) = \frac{1}{2} \int dz V(Q, z)(f_{L}^{2}(z) + f_{R}^{2}(z))$ $C_{2}(Q^{2}) = \frac{1}{2} \int dz V(Q, z)(f_{L}^{2}(z) - f_{R}^{2}(z))$ $C_{3}(Q^{2}) = \frac{1}{2} \int dz \ z \ \partial_{z} \ V(Q, z)(f_{L}^{2}(z) - f_{R}^{2}(z))$ $C_{4}(Q^{2}) = 2M \ \frac{1}{2} \int dz \ z \ V(Q, z)(f_{L}^{2}(z) \ f_{R}^{2}(z))$

Nucleon properties in nuclear media with an alternative AdS/QCD model ³

 $^{3}\text{A}.$ V and M. A. M. Contreras, In progress.

***** Electromagnetic Form Factors in nuclear media. ⁴

Assuming that nucleon is quasi-free in the nuclear medium, the electromagnetic current can be expressed as

$$\langle p'|J^{\mu}(0)|p
angle = ar{u}(p')[\gamma^{\mu}F_{1}^{N*}(Q^{2}) + rac{i\sigma^{\mu
u}}{2m_{N}^{*}}q_{
u}F_{2}^{N*}(Q^{2})]u(p),$$

where F_1^{N*} and F_2^{N*} are the Dirac and Pauli form factors in nuclear medium, which are normalized to electric charge e_N and anomalous magnetic moment k_N of the corresponding nucleon: $F_1^{N*}(0) = e_N$ and $F_2^{N*}(0) = k_N^*$.

* Scaling mass. ⁵

$$rac{M^*}{M} \sim 1-0.21 rac{
ho_B}{
ho_0}$$

⁴G. Ramalho, K. Tsushima and A. W. Thomas, J. Phys. G **40**, 015102 (2013).

⁵K. Saito, K. Tsushima and A. W. Thomas, Prog. Part. Nucl. Phys. 58, 1 (2007).

***** A different approach.

In AdS / QCD models media properties are coded in the background (usually in the metric), but dilaton although not dynamical, it is background also. So

$$\kappa \rightarrow \kappa_N = \sqrt{1 - 0.14 \frac{\rho_B}{\rho_0} \kappa},$$

for modes dual to Proton.

Figure: Dirac form factor for proton in media to $\rho_B/\rho_0 = 0$ (continous line) and $\rho_B/\rho_0 = 1$ (dashed line).

Figure: Pauli form factor for proton in media to $\rho_B/\rho_0 = 0$ (continous line) and $\rho_B/\rho_0 = 1$ (dashed line).

Final Comments and Conclusions

Final Comments and Conclusions

- We show that dilaton field can capture part of the medium properties where hadrons are located.
- With a simple approach that considers hadron mass in the nuclear medium, it is possible to calculate electromagnetic form factors.
- In a qualitative sense, we got an agreement with properties of the nucleon in nuclei.
- We plan to use the idea to study other properties and other hadrons in nuclei.

