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Motivation

Dvali and Gómez

G. Dvali and C. Gomez, Black Hole’s 1/N Hair. Phys. Lett. 719, 419 (2013);G. Dvali and C.
Gomez, Landau-Ginzburg Limit of Black Hole’s Quantum Portrait: Self Similarity and Critical
Exponent. Phys. Lett. B 716, 240 (2012);....

→ BH are quantum objects

→ BH as Bose-Einstein condensates(BEC)

→ Hawking radiation is seen as leakeage from the BEC

New perspectives on:

→ Bekenstein entropy

→ Absence of hair

→ Quantum nature of information storage and the possible information loss in BHs.



Basic idea

The physics of BH can be understood in this picture in terms of a single number N, the
number of gravitons contained in the Bose-Einstein condensate (BEC).

− These condensed gravitons have a wave length λ∼ N
√

LP , LP being the Planck length;

− They have a characteristic interaction strength αg ∼ 1/N (reminiscent of meson
interactions in large Nc gauge theories)

− The leakage leads to a Hawking temperature of order TH ∼ 1/
(

N
√

LP

)

, equal to the
inverse of λ.

− The mass of the BH is M ∼ N
√

MP and its Schwarzschild radius therefore is given by
rs∼ N

√
LP , thus agreeing with the Compton wavelength of the quantum gravitons λ, in

accordance with the uncertainty principle that dictates λ≃ rs in the ground state of the
quantum system.

Main source of the talk:

Bose-Einstein graviton condensate in a Schwarzschild black hole, J.A.,D. Espriu and L.
Gabbaneli, Class.Quant.Grav. 35 (2018) no.1, 015001



Notation

• Gαβ will be the Einstein tensor: Gαβ=Rαβ − 1

2
gαβR, where the Ricci tensor and scalar

curvature are constructed with the metric gαβ in the usual way.

• We will denote by g̃αβ the background metric that in our case it will invariably be the
Schwarzschild metric.

• Perturbations above this background metric will be denoted by hαβ, so gαβ= g̃αβ+hαβ.

• We will use the Minkowskian metric convention ηαβ= d i a g(−1, 1, 1, 1).

• We will leave for later discussion whether the indices of hαβ have to be raised or lowered
with the background metric g̃αβ or the full one gαβ. Likewise for the corresponding volume

element ( −g
√

versus −g̃
√

).

The graviton condensate has necessarily to be described by a tensor field that in our
philosophy has to be considered as a perturbation of the classical metric. Only spherically
symmetric perturbations will be considered to keep things as simple as possible.



Einstein equations as Gross-Pitaevskii equations

We note that the usual Gross-Pitaevskii equation employed to describe Bose-Einstein
condensates is

→ a non-linear Schrödinger equation; i.e. an equation of motion that contains self-
interactions (hence the non-linearity),

→ a confining potential for the atoms or particles constituting the condensate,

→ a chemical potential that is conjugate to the number of particles or atoms contained in
the condensate.

Among all these ingredients, the perturbed Einstein equations already contain most of them.
They are already non-linear and while there is no confining potential explicitly included (as
befits a relativistic theory) they do confine particles, at least classically, because if the selected
background corresponds to a Schwarzschild BH, the strong gravitational field classically traps
particles inside the horizon.



Chemical Potential

• There is one ingredient missing:the equivalent of the chemical potential.

We add to the appropriate action a chemical potential term such as

∆Schem.pot.=−1

2

∫

d4x −g̃
√

µ̃ hαβh
αβ=−1

2

∫

d Ṽ µ̃ h2 , (1)

that is conjugate to the quantity h2≡hαβ h
αβ, which should be related to the graviton

density of the condensate inside a differential volume element d Ṽ .

• The full action for hαβ is

S(h)=MP
2

∫

d4x −g
√

R(g)− 1

2

∫

d4x −g̃
√

µ̃ hαβh
αβ . (2)

• In the first term of (2), we raise and lower indices with gαβ= g̃αβ+ hαβ, whereas in the
second term of this action we raise and lower indices with g̃αβ.

• Note that we assume that the chemical potential is r-dependent.



Equations of Motion

The actual equations of motion derived from the previous action may take slightly different
forms depending on the choice of volume elements. For the time being, let us take the
simplest possibility

Gµ
ν(g̃αβ+ hαβ)= µ̃ hµ

ν . (3)

where indices are assumed to be raised with the background metric only.

• In the chemical potential part µ̃ is considered in the grand canonical ensemble; this implies
that this magnitude is an external field and does not vary in the action; in particular,
for these equations of motion, it is independent of hµν, so δ µ̃/δ hµν = 0. Under these
considerations this term resembles the chemical potential term of the Gross-Pitaevskii
equation.

• The chemical potential satisfies the constraint,which is valid up to every order in
perturbation theory.:

∇νGµν =0 =⇒ (µhµν)
;ν = µ,ν hµν+ µhµν

;ν =0 . (4)

• ∇ν in equation (4) is defined using the full metric.



Numerical solution:Outside the horizon

Even after the inclusion of µ there is not other normalizable solution outside the black
hole horizon than the trivial solution for the perturbation corresponding to µ=0.

Figure 1. Each point represent a magnitude proportional to the integral of h2 outside the event

horizon. The closer the limit to an asymptotically flat space-time is (i.e. decreasing the initial

condition near infinity), the smaller this integral is.



Numerical Solution:Inside the horizon

In Figure 2 a plot of the numerical solution reveals that to a very good approximation
throughout the interior of the BH horizon

ht
t=hr

r= constant . (5)

Figure 2. The graph shows that ht
t (represented by a gray solid line) and hr

r (by a black dashed

line), as obtained by numerical integration of the O(hµν
2 ) equations, are constant and equal.



Exact solution(s)

• Ansatz: ht
t=hr

r= ϕ with ϕ being a constant.

• In fact, there are several possible solutions depending on how one chooses to treat the
separation between background and fluctuation metrics.

• If we decide to raise and lower indices with the full metric, it is natural to keep the volume
element as the one given by −g

√
, gαβ being the full metric. The LHS of the equation

of motion now reads

Gt
t=Gr

r=
−ϕ

r2
(6)

• The resulting equation of motion for a constant ϕ is now

− ϕ

r2
= µϕ− 3

2
µϕ2 (7)

that can be interpreted as a mean field-like Gross-Pitaevskii equation for the condensate
wave function ϕ.

• Using the fact that X ≡ µ r2, we (re)obtain that X is a constant and

X =− 1

1− 3

2
ϕ
≃−1− 3

2
ϕ+ ... . (8)



Interpreting the results

The left graph in Figure 3 presents the curves for the two covariant components of the
perturbation. The dimensionful chemical potential is plotted also for comparison. AsX=µ r2

is a constant function, µ ∝ 1/r2 and it is not null over the event horizon. Of course it is

simpler to represent just ϕ or h2, which are just constants.

Figure 3. Curves for htt (black solid), hrr (dashed) line and the dimensionful chemical potential µ (dotted

line). On the right plot, h2 is shown. As already emphasized, a whole family of solutions are obtained,

parametrized by a real arbitrary constant. One can simply trade this constant for the value of ϕ.



Finite Norm

It is immediate to see that the solution found is of finite norm. The integral is

∫

0

rs

d r r2 [(ht
t)2+(hr

r)2]≃ h2 rs
3 . (9)

• Then the integral over the interior of the BH of h2 is given by
4π

3
rs
3h2.

• This quantity is related to the total number of gravitons of the condensate.

• h2 would be related to its density in the BH interior that turns out to be constant.

Note that hαβ is dimensionless and that in order to have a properly normalized kinetic term
we have to divide the Einstein-Hilbert action by MP

2 .



Making contact with Dvali and Gómez

Possibly our more striking results are that the dimensionless chemical potential X(w) =
µ(r) r2 stays constant and non-zero throughout the interior of the BH and that so does the
quantity h2 previously defined.

It is totally natural to interpret X as the variable conjugate to N , the number of gravitons.

How could we determine the value of N from our solution? Even after using a properly
normalized ĥαβ=MP hαβ, the dimensions of (9) are not appropriate to deliver to us the value
of N .

The quantity

ρĥ≡
1

2
ĥαβ

1

λ
ĥ
αβ

, (10)

with λ being the graviton wave length, has the right ingredients to play the role of probability
density in the present context. In the BEC λ= rs.



• If we assume this, then

N =
8 π

3
MP

2 rs
2h2 ⇒ rs=

1

|h|
3

8 π

√

N
√

LP (11)

that agrees nicely with [DG2] under the maximum packaging condition λ= rs.

• Recall that hα
α = ϕ is a constant that is entirely determined by the value of the

dimensionless chemical potential X. The rest of relations can be basically derived from
this.

• Indeed within the present philosophy we assign to each graviton in the BEC an energy
ε=1/λ=1/rs.

• The total energy of the system will be given by

E =
1

2

∫

d V ε2 ĥ
2
=

∫

d V ε ρĥ . (12)

• If the energy ε is a constant and given by 1/rs, then Eq. (9) has to be interpreted as the
number of gravitons in the BEC, i.e. the integral of the graviton density in the interior of
the BH.



Hawking Radiation

• As seen above the dimensionless chemical potential X has a rather peculiar behaviour.

→ It has a constant value inside the BH and it appears to be exactly zero outside. This
behaviour is summarized in Figure 4.

Figure 4. The behaviour of both chemical potentials, µ in solid line and the dimensionless

X in dashed line, across the horizon of the BH (dotted line). In this case the jump at the

horizon amounts to ∆X =∆ µ≃ 0.2.

• For a moment forget about the geometrical interpretation of BH physics and let us treat
the problem as a collective many body phenomenon.

• From this figure it is clear why gravitons are trapped behind the horizon: the jump of the
chemical potential at r= rs would prevent the ‘particles’ inside to reaching infinity.



BUT one of the modes can escape at a time without paying any energy penalty if the
maximum packaging condition is verified.

Semiclassical calculation inspired by this picture; using M ∼MP N
√

:

dM

d t
≃MP

1

2 N
√ dN

d t
=

1

2 rs

dN

d t
. (13)

To estimate dN/d t (which is negative) we can use geometrical arguments to determine the
flux.

→ Assume that for a given value of rs only one mode can get out (as hypothesized above)
and that propagation takes place at the speed of light, we get:

dM

d t
≃−3

2

1

rs
2
. (14)

→ This agrees with the results of [DG2] —for instance Eq. (35)— and yields T ≃ 1/rs. The
approximations made in the discussion could only modify the coefficient by a numerical
factor of O(1).

To determine the rate of variation of N we have to multiply the surface (4 π rs
2) times the

flux; i.e. the density of the mode times the velocity, assumed to be c=1 in our units. Since
the density of the mode is constant in the interior, it is just 3/(4π rs

3).



Quasilocal Gravitational Energy

• Charged Black Hole(Reissner-Nordstrom): Two Horizons.

• In the inner region, which is “classical”, Is there a BE Condensate?

• We need a criteria to choose from two possible solution of our basic Gross-Pitaevskii
equation:

− Quasilocal Gravitational Energy(QLGE).A. Lundgren et al,PRD75 084026(2007)

• Tentative result(J.A., D. Espriu and L. Gabbanelli): The condensate lower the QLGE in
the classical forbidden region, but it increases the QLGE in the classically allowed region.

Figure 5. Brown-York QLGE for a Reissner-Nordstrom BH wit a charge Q2=0.8m2 and a wave function

ϕ= 0.4.(red) and ϕ=0(blue). Both axis are in units of the BH mass.



Conclusions and outlook

• We have some insights in the reformulation of a quantum theory of black holes in the
language of condensed matter physics.The key point of the theory is to identify the black
hole with a Bose-Einstein condensate of gravitons.

• We have conjectured the set of equations that play the role of the Gross-Pitaevskii non-
linear equation; they are derived from the Einstein-Hilbert Lagrangian after adding a
chemical potential-like term.

• The exterior solution has a zero chemical potential. On the contrary, in the interior we
have found a normalizable result, which leads to a non-zero chemical potential of the BH
that behaves as 1/r2. There is a finite jump of the chemical potential at the BH horizon.

• From the existence and knowledge of this solution, most relations obtained in [DG1, DG2]
can be rederived.

• The relation between the number of gravitons and the geometric properties of the BH
involve an a priori independent and tuneable parameter, the dimensionless chemical
potential X (related to the mean-field wave function of the condensate ϕ).

• Quasi Local Gravitational Energy permits to discriminate between solutions of our Gross-
Pitaevskii gravitational equation.

• Our approach is somewhat different from Dvali, Gómez and coworkers. We assume from
the start the existence of a classical geometry background that acts as confining potential
for the condensate.



• It is quite plausible that condensates of other quantum fields inside the BH horizon could
be formed. While we do not expect much of a conceptual difference, it would be very
interesting to see the similarities and differences with the case of quantum gravitons.
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