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Lorentz and CPT symmetry violation

At mP several conceptual issues arise and several theoretical limitations
put in question the perturbative scheme of the standard model → need for
a more fundamental theory or quantum gravity.

At these energies,

a) The continuum of spacetime may be lost and a sort of discreetness or
spacetime foam may appear.

b) Compactified extra dimensions may become important.

c) Supersymmetry.
...

However, all these effects are very suppressed at low energies and it is
unrealistic today to reach these energies close to the Planck scale. The
possibility of Lorentz invariance violation provides an alternative route
to test quantum gravity effects with ultrahigh sensitivity experiments.
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Effective framework

A general framework within the language of effective field theory, the
standard model extension (SME), has been proposed to to describe Lorentz
symmetry violation in all the sectors of the standard model and gravity.

Several experimental tests provide a robust framework to study Lorentz
violations. The SME can be classified according to:

Minimal sector with mass dimension d ≤ 4 [D. Colladay and V. A. Kostelecky, Phys.

Rev. D 55, 6760 (1997); D. Colladay and V. A. Kostelecky, Phys. Rev. D 58, 116002 (1998); S. R. Coleman and

S. L. Glashow, Phys. Rev. D 59, 116008 (1999).]

Non minimal sector with higher-order operators, d > 4, [R. C. Myers and

M. Pospelov, Phys. Rev. Lett. 90, 211601 (2003); V. A. Kostelecky and M. Mewes, Phys. Rev. D 80, 015020 (2009);

Phys. Rev. D 85, 096005 (2012); M. Schreck, Phys. Rev. D 93, no. 10, 105017 (2016).]
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Alternatively, studies of CPT and Lorentz-invariance violation have been
given in

Modified dispersion relations [G. Amelino-Camelia, J. R. Ellis, N. E. Mavromatos,

D. V. Nanopoulos and S. Sarkar, Nature 393, 763 (1998).]

String/M theory [ V. A. Kostelecky and S. Samuel, Phys. Rev. D 39, 683 (1989); V. A. Kostelecky and

R. Potting, Nucl. Phys. B 359, 545 (1991).]

Loop quantum gravity [R. Gambini and J. Pullin, Phys. Rev. D 59, 124021 (1999); J. Alfaro,

H. A. Morales-Tecotl and L. F. Urrutia, Phys. Rev. Lett. 84, 2318 (2000); H. Sahlmann and T. Thiemann, Class.

Quant. Grav. 23, 867 (2006).]

Horava gravity [ P. Horava, Phys. Rev. D 79, 084008 (2009).]
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Lorentz violating extensions

The Lorentz-invariance violating (LIV) terms in the Lagrangian can be
classified according to its mass dimension d

S =

∫
d4x

LSM + δL(d=3,4)
LIV︸ ︷︷ ︸

minimal extension

+ δL(d=5)
LIV + . . .︸ ︷︷ ︸

non-minimal

 . (1)

With experiments the LIV parameters can be bounded [V. A. Kostelecky and N. Russell,

Rev. Mod. Phys. 83, 11 (2011)],
Table D13. Photon sector, d = 3

Combination Result System

kZ
AF < 10−28 GeV PVLAS
” < 10−19 GeV Hydrogen spectroscopy

|k(3)
(V )10| < 16× 10−21 GeV Schumann resonances

|k(3)
(V )11| < 12× 10−21 GeV ”

|k(3)
AF| ≡

(
6|k(3)

(V )11|
2 + 3|k(3)

(V )10|
2
)1/2

/
√

4π (10+4
−8)× 10−43 GeV CMB polarization

|k(3)
AF| (15± 6)× 10−43 GeV ”

|k(3)
AF| (0.57± 0.70)H0 Astrophysical birefringence

|k(3)
(V )00| < 14× 10−21 GeV Schumann resonances

k
(3)
(V )00 (1.1± 1.3± 1.5)× 10−43 GeV CMB polarization
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The Chern-Simons and axial term [S. M. Carroll, G. B. Field and R. Jackiw, Phys. Rev. D 41, 1231

(1990); D. Colladay and V. A. Kostelecky, Phys. Rev. D 58, 116002 (1998).]

δL(3)
photon = −1

4kµε
µνρλAνFρλ , (2)

δL(3)
fermion = ψ̄bµγ

5γµψ .

The Myers and Pospelov model [R. C. Myers and M. Pospelov, Phys. Rev. Lett. 90, 211601 (2003)]

δL(5)
fermion = 1

mP
ψ̄(η1 /n1 + η2 /n2γ5)(n · ∂)2ψ , (3)

δL(5)
photon = ξ

2mP
nµε

µνρλAν(n · ∂)2F ρλ .

In general the Lorentz symmetry breakdown is implemented with a
preferred four vector bµ, kµ, nµ, which is believed to arise from
expectation values of tensor fields in an underlying theory.

7 / 23



Higher-order time derivative theories

Theoretically, what to expect in the presence of higher-order Lorentz
violation?

1) More degrees of freedom.

2) Ghost solutions with nonstandard momentum dependence and
nontrivial behavior in the complex energy plane.

3) Improved UV divergencies in the QFT.

∆ = 1
p2−m2−p4/M2 = 1

p2−m2
1
− 1

p2−m2
2
, We have two poles, one at

p2 = m2
1(m,M) and the other at p2 = m2

2(m,M).
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4) An indefinite metric in Hilbert space η, which may lead to a
pseudo-unitary condition for the S matrix, i.e., S†ηS = η. [T. D. Lee and

G. C. Wick, Nucl. Phys. B9, 209 (1969); T. D. Lee, G. C. Wick, Phys. Rev. D2, 1033 (1970).].

5) Non renormalizability, Large Lorentz violations [J. Collins, A. Perez, D. Sudarsky,

L. Urrutia and H. Vucetich, Phys. Rev. Lett. 93 (2004) 191301.], modified asymptotic Hilbert
space [R. Potting, Phys. Rev. D 85, 045033 (2012); M. Cambiaso, R. Lehnert and R. Potting, Phys. Rev. D 90, no. 6,

065003 (2014)].

In this talk we will show some approaches to prove unitarity and studies on
renormalization in effective field theories with higher-order Lorentz
invariance violation.
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The optical theorem

The main tool to prove perturbative unitarity in our models is the unitarity
constraint given by the optical theorem. Expand the S-matrix, SS† as
S = 1 + iT

−i(T − T †) = T †T . (4)

Take the expectation value between initial states |i〉 and final states 〈f |
and inserting a complete set of intermediate states 〈m| rewrite the above
equation as

〈f |T |i〉 − 〈f |T † |i〉 = i
∑

m

∫
dΠm 〈f |T † |m〉 〈m|T |i〉 . (5)

We write Mfi −M∗if = i
∑

m

∫
dΠmMfmM∗im, and in the special case of

forward scattering f = i one has

2 Im(Mii ) =
∑

m

∫
dΠm |Mim|2 . (6)
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Perturbative Unitarity

Graphically, the cut equations are given by the diagrams

(a) λφ4

4!
interaction term. (b) QED electron self energy.

Note that the loops contain the negative-metric states, however, they
should not appear in the physical (intermediate) sum of states.
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The model [ CMR and L. F. Urrutia, Phys. Rev. D 95, no. 1, 015024 (2017) ;J. R. Nascimento, A. Y. Petrov and

CMR, Eur. Phys. J. C 78, no. 7, 541 (2018) ]

Let us focus on the Lagrangian

L = ψ̄(i /D −m)ψ + g ψ̄/n(n · ∂)2ψ − 1
4FµνF

µν , (7)

where n is a privileged four-vector and g is a small parameter. We fix
n = (1, 0, 0, 0) which yields the equation of motion(

iγµ∂µ −m + gγ0∂2
0

)
ψ(x) = 0.

The dispersion relations is

(p0 − gp2
0)2 − ~p2 −m2 = 0. (8)

and solving we find the four solutions

ω1 = 1−
√

1−4gE
2g , ω2 = 1−

√
1+4gE
2g ,

W1 = 1+
√

1−4gE
2g , W2 = 1+

√
1+4gE
2g ,

where E =
√
~p2 + m2.
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Figure 1: The poles in the complex plane
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Implementation: Lee-Wick prescription

Some central points to satisfy the perturbative constraint are

Figure 2: The scattering diagram

1) The residues in the loop diagram are computed with an Euclidean
Wick rotated contour path.

2) The sum over physical states in the cut diagram are carried out
only over positive metric states. This is the Lee-Wick prescription
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We should compare the imaginary part of the integral

M(p) =
−e4Jµ

1 (p)Jν
2 (p)

p4

∫
d3q

(2π)4 Tr
(
γµ(/R + m)γν( /Q + m)

)
I (q0, p0) ,

where Rµ = ((p0 + q0)(1− g(p0 + q0)), ~q), Jµ1 (p) = v̄ r (p2)γµus(p1)
Jν2 (p) = ūs(p1)γνv r (p2) and

I (q0, p0) = −i
∫

C

dq0

g4(q0−ω1)(q0−ω2)(q0−W1)(q0−W2)

× 1
(q0−p0−ω1)(q0−p0−ω2)(q0−p0−W1)(q0−p0−W2) .

with the amplitude

A =
∑

phys→ω1,ω2

∑
r ,r ′

∫
d3k2
(2π)3

1
E2

d3k1
(2π)3

1
E1

(2π)4δ4(k2 + k1 − p)|M|2 ,

where according to the Lee-Wick prescription the sum is only over positive
metric states.
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Renormalization and asymptotic states

It has been shown that in the presence of Lorentz invariance violation new
operators induced via radiative corrections in the effective Lagrangians
may modify the pole masses of the two-point functions. [R. Potting, Phys. Rev. D 85,

045033 (2012); M. Cambiaso, R. Lehnert and R. Potting, Phys. Rev. D 90, no. 6, 065003 (2014)].

To explain the idea consider the standard Yukawa Lagrangian

L = 1
2 (∂φ)2 − 1

2φ
2 + λψ̄φψ + ψ(i /∂ −M)ψ , (9)

and let us compute the one-loop radiative correction to the scalar self
energy Σ2.

p+ k

k

p p

Figure 3: Scalar self energy
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The standard computation gives divergencies proportional to p2 and M2

which can be cancelled by counterterms.
One can write the two-point function (or Green function) as

G (p2) = 1
p2−m2

R +Σ(p2)
, (10)

with
Σ(p2) = Σ2(p2) + p2δφ − (δφ + δm)m2

R , (11)

The on-shell conditions are

Σ(m2
Pole) = m2

R −m2
Pole ,

dΣ(p2)
dp2

∣∣∣∣∣
p2=m2

Pole

= 0 (12)

1) The pole mass mPole defines the mass of asymptotic states.
2) In the presence of Lorentz violations one has a different structure that
may lead to modifications in the renormalization conditions and pole mass.
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Renormalization

We focus on the Yukawa Lagrangian

L = 1
2∂µφ∂

µφ− 1
2M

2φ2 + ψ̄ (i∂/−m)ψ + g2ψ̄n/(n · ∂)2ψ + g ψ̄φψ . (13)

We impose the simplification of considering m = M and choose the
preferred four-vector to be purely timelike n = (1, 0, 0, 0).

We have the usual dispersion relation for the scalar with solutions
p0 = ±

√
~p2 + m2, and the modified ones for the fermion.

We will compute the diagram

p+ k

k

p p

Figure 4: Scalar self energy
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Radiative corrections

In this way we have

Π(p) = −g2

2 φ(−p)φ(p)

∫
d4k

(2π)4
Tr((Qµγµ+m)(Rνγν+m))

(Q2−m2)(R2−m2)
, (14)

where we define

Qµ = kµ − g2nµ(n · k)2 ,

Rµ = kµ + pµ − g2nµ(n · (k + p))2 . (15)

Π(p) = Π(0) + pµ
(
∂Π
∂pµ

)
p=0

1
2pµpν

(
∂2Π

∂pµ∂pν

)
p=0

+ . . . . (16)
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The scalar self energy

Finally and after a lengthy calculation, one arrives at

Π(p) = −2g2m2q0 − 2g2p2q1 − 2g2(n · p)2qn , (17)

with

q0 = − i
48π2g2

2 m2 + i
48π2

(
6γE − 0, 46 + 12iπ − 18 ln

(g2m
2

))
,

q1 = − i
2π2

(
iπ − ln

(g2m
2

)
− 1

3

)
,

qn = i
π2 . (18)

The contribution for the fermion self energy follows in the along similar
lines.
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Renormalization conditions

We start with

L = 1
2∂µφR∂

µφR − 1
2m

2
Rφ

2
R , (19)

Consider the renormalized two-point function

(Γ
(2)
R )−1 = p2 −m2

R + ΠR(p) , (20)

where

ΠR(p) = p2Aφ + m2
RBφ + (n · p)2Cφ , (21)

and

Aφ = −2g2q1 ,

Bφ = −2g2q0 ,

Cφ = −2g2qn . (22)
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The scalar pole mass

We demand the renormalized two-point function to satisfy the condition at
P̄2
φ = 0

(Γ
(2)
R )−1(P̄2

φ = 0) = 0 , (23)

and consider the ansatz

P̄2
φ = p2 −M2

ph + ȳ(n · p)2 , (24)

where Mph and ȳ are the unknown constants we want to find.
From (20) replacing the value of p2 given in (24) and using the condition
(23), we arrive at the equation

0 = M2
ph − ȳ(n · p)2 −m2

R + Aφ
(
M2

ph − ȳ(n · p)2
)

+ Bφm
2
R

+Cφ(n · p)2 . (25)
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Conclusions

Consistency of the Lorentz violating effective field models are
important to be tested.

One can preserve unitarity at one loop order in higher-order Lorentz
violating theories using the Lee-Wick prescription.

In some LIV models the UV divergences are improved and they can be
renormalized at finite number of loops, and they lead to changes in
the free external states.

Several works are planned for the near future: Kallen-Lehman
representation for higher-order theories, study of more models,
induced finite corrections (vertex).
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