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The model

Equation of state:

p = (ρ −4B)/3, with B Gd = 60[MeV/fm3], (1)

where Gd is the universal constant.

Interior:
ds2 =−eν dt2 + eλ dr2 + r2dΩ

2. (2)

Exterior: Schwarzschild-Tangherlini spacetime1

ds2 =−
(

1− 2M Gd

(d−3)rd−3

)
dt2 +

(
1− 2M Gd

(d−3)rd−3

)−1
dr2 + r2dΩ

2, (3)

with M Gd
d−3 being the mass of the star in d-dimensions.

1F. L. Tangherlini, Nuovo Cimento 27, 636 (1963) & J. P. S. Lemos and V. T. Zanchin, Phys. Rev. D 80,
024010 (2009).



The model

Stellar structure equations2

dm
dr

= Sd−2ρrd−2, (4)

dp
dr

=−(p+ρ)Gd

 Sd−2pr
(d−3) +

m
rd−2

1− 2mGd
(d−3)rd−3

 , (5)

dν

dr
=− 2

(p+ρ)

dp
dr

, (6)

where
e−λ = 1− 2mGd

(d−3)rd−3 . (7)

Boundary conditions:
In the center Gd m(0) = 0 and Gd ρ(0) = Gd ρc.

The surface of the star is at r = R defined by p(r = R) = 0.

2J. Ponce de Leon and N. Cruz, Gen. Relativ. Gravit. 32, 1207 (2000) & T. Harko and M. Mak, J. Math.
Phys. 41, 7 (2000).



The model

Radial oscillations equations

dξ

dr
=

ξ

2
dν

dr
− 1

r

(
(d−1)ξ +

∆p
pΓ

)
; Γ = (1+

ρ

p
)

dp
dρ

, (8)

d∆p
dr

=
ξ reλ

eν
(p+ρ)ω2 +

(p+ρ)rξ

4

(
dν

dr

)2
−

(
Sd−2Gd

reλ (p+ρ)

d−3
+

1
2

dν

dr

)
∆p

−2(d−2)ξ
dp
dr

−2Sd−2Gd(p+ρ)eλ rξ

(
p

d−3

)
. (9)

Boundary conditions:
It is required in the center ∆p =−(d−1)(ξ Γp)center.

In the center, for normalized eigenfunction, we have ξ (r = 0) = 1.

At the surface of the object we have (∆p)surface = 0.



The model

Solving the stellar structure equations
The structure equations are integrated using the fourth order Runge - Kutta
method for a ρc Gd and d.

Solving the radial oscillation equations
We solve the radial oscillation equation by means of the shooting method.

The oscillation equations are integrated for a trial value of ω2. If after the
integration the condition (∆p)surface = 0 is not satisfy, the trial value ω2 is
corrected in order to match this condition in the next integration.

The values of ω2 that satisfy the boundary condition at the surface are the
eigenfrequencies.



Results



Static equilibrium configurations of strange stars in a d-dimensional spacetime
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Figure: Mass of the object against the central energy density, for different spacetime dimensions.
The full circles indicate the places where maximum masses are found.



Static equilibrium configurations of strange stars in a d-dimensional spacetime
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Figure: Total mass of the object against the total radius, for different spacetime dimensions. The
complete circles mark the points where the maximum masses are found.



Stability of strange stars in a d-dimensional spacetime
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Figure: Fundamental mode eigenfrequency
versus the mass of the object, for different
dimensions.

In all cases, the maximum mass point is
found in ω = 0.

For M Gd/(d − 3) × ρc Gd , the points
where dM/dρc = 0 separates stable stars
from the unstable ones.



Stability of strange stars in a d-dimensional spacetime
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Figure: Fundamental mode eigenfrequency against the central energy density, for different di-
mensions.



Conclusions

We found that the dimension affects the physical properties of the stars, such
as: the total radius, the total mass, and the eigenfrequencies of oscillation of the
fundamental mode.

We found that for some values of central energy densities and total mass range,
the increment of the spacetime dimension helps to grow the stability of compact
stars.

In a graphic M Gd/(d−3)×ρc Gd the regions constituted by stable and unstable
stars can be recognized by the conditions dM

dρc
> 0 and dM

dρc
< 0, respectively.

Thanks
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The model

dΩ
2 =

d−2

∑
i=1

(
i−1

∏
j=1

sin2
θj

)
dθ

2
i



Static equilibrium configurations of strange stars in a d-dimensional spacetime
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Figure: The redshift function at the object’s surface, e−ν(R)/2 − 1, as a function of the central
energy density, for different spacetime dimensions.



Stability of strange stars in a d-dimensional spacetime
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Figure: Change of the fundamental mode eigenfrequency squared with the spacetime dimen-
sions, for five different central energy densities. The central energy density units are [MeV/fm3].


