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Equation of state:
p=(p—4%)/3, with BGy;=60MeV /fm?], (1)
where G is the universal constant.

Interior:
ds? = —eV di* + e dr® + r2dQ2. 2

Exterior: Schwarzschild-Tangherlini spacetime’

-1
ds? = — (1 - ﬂ%) dr* + (1 - ﬂ%) dr’ +72dQ*,  (3)

with

1;1%,1 being the mass of the star in d-dimensions.

IF. L. Tangherlini, Nuovo Cimento 27, 636 (1963) & J. P. S. Lemos and V. T. Zanchin, Phys. Rev. D 80,
024010 (2009).



Stellar structure equations>
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Boundary conditions:
o In the center Gym(0) =0 and G4 p(0) = G4 pe.
o The surface of the star is at » = R defined by p(r = R) = 0.

2J. Ponce de Leon and N. Cruz, Gen. Relativ. Gravit. 32, 1207 (2000) & T. Harko and M. Mak, J. Math.
Phys. 41, 7 (2000).



Radial oscillations equations
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Boundary conditions:
o It is required in the center Ap = —(d — 1) (D) center-
o In the center, for normalized eigenfunction, we have &(r =0) = 1.

o At the surface of the object we have (Ap)surface = 0.



Solving the stellar structure equations

o The structure equations are integrated using the fourth order Runge - Kutta
method for a p. G4 and d.
Solving the radial oscillation equations
@ We solve the radial oscillation equation by means of the shooting method.
o The oscillation equations are integrated for a trial value of @?. If after the

integration the condition (Ap)syrface = O is not satisfy, the trial value o? is
corrected in order to match this condition in the next integration.

o The values of @? that satisfy the boundary condition at the surface are the
eigenfrequencies.



Results
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Figure: Mass of the object against the central energy density, for different spacetime dimensions.
The full circles indicate the places where maximum masses are found.
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Figure: Total mass of the object against the total radius, for different spacetime dimensions. The
complete circles mark the points where the maximum masses are found.
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Figure: Fundamental mode eigenfrequency
versus the mass of the object, for different
dimensions.

@ In all cases, the maximum mass point is
found in @ = 0.

@ For MG,/(d — 3) x p.Gy, the points
where dM /dp, = 0 separates stable stars
from the unstable ones.
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Figure: Fundamental mode eigenfrequency against the central energy density, for different di-
mensions.



@ We found that the dimension affects the physical properties of the stars, such
as: the total radius, the total mass, and the eigenfrequencies of oscillation of the
fundamental mode.

o We found that for some values of central energy densities and total mass range,
the increment of the spacetime dimension helps to grow the stability of compact
stars.

o In a graphic M G;/(d —3) x p. G, the regions constituted by stable and unstable
stars can be recognized by the conditions % > (0 and j—g’l_ < 0, respectively.
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Figure: The redshift function at the object’s surface, e VIR/2 _ 1, as a function of the central
energy density, for different spacetime dimensions.
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Figure: Change of the fundamental mode eigenfrequency squared with the spacetime dimen-
sions, for five different central energy densities. The central energy density units are [MeV/ fm3].



