

Investigating diffractive processes in the ALICE experiment at the LHC

XII Latin American Symposium on High Energy Physics

26th-30th November 2018 Lima, Perú

Ernesto Calvo Villar on behalf of the ALICE Collaboration Pontificia Universidad Católica del Perú

ALICE detectors

track — **>** pseudo-track

Association of the reconstructed vertex with a hit in SPD, FMD or VZERO.

In 10% of cases there is no reconstructed vertex \rightarrow A random vertex is generated from measured vertex distribution

VZERO scintillator tiles divided in 4 rings ($\delta\eta$ =0.5) and 8 sectors in azimuth ($\delta\varphi$ =45°)

track — **>** pseudo-track

Association of the reconstructed vertex with a hit in SPD, FMD or VZERO.

In 10% of cases there is no reconstructed vertex \rightarrow A random vertex is generated from measured vertex distribution

VZERO scintillator tiles divided in 4 rings ($\delta\eta$ =0.5) and 8 sectors in azimuth ($\delta\phi$ =45°)

"One-track" event \rightarrow If all pseudo-tracks in event are confined to $\eta_R - \eta_L < 0.5$ and $\delta \varphi = 45^\circ$ (small fraction of events, resolution imposed by VZERO)

"Multi-track" event \rightarrow All other events

7

Diffraction in Run I: Classification procedure

Diffraction in Run I: Arm Efficiency

ALICE: Eur.Phys.J. C73 (2013) no.6, 2456

2018-Nov-26

XII SILAFAE/Lima

10

ALICE: Eur.Phys.J. C73 (2013) no.6, 2456

Largest gap distribution: Comparison between data and MC with and without double-diffraction

ALICE: Eur.Phys.J. C73 (2013) no.6, 2456

Largest gap distribution: Comparison between the data and MC with and without double-diffraction

Diffraction in Run I: MC adjustment

Diffraction in Run I: Results

- At the end of Run I the ALICE Diffractive detector (AD) was installed and commissioned, with the aim of increasing the pseudorapidity coverage and the sensitivity of ALICE to low mass diffractive systems.
- Two stations, ADA and ADC, located at z=-19.6 and z=17.0 meters respectively from the interaction point (IP).

ADC Detector

wavelength-shifting (WLS) bars

ACORD ADA Detector

2018-Nov-26

19

AD Performance

AD Performance

AD improves trigger efficiency for diffractive events at low diffracted masses.

Run I: $MB_{OR} =$ VOC + SPD + VOARun II: $MB_{OR} = ADC + VOC + SPD + VOA + ADA$

23

24

TENERA

Improvements to AD

Left: Iron Shielding was added in front of the PMT boxes to protect the PMTs from direct particles hits, improving AD signal.

Right: AD Simulation correspondingly updated.

Particle flux at A-Side (Z=1685 cm) You are looking towards the interaction point!

New Geometry (2017)

Simulation: Neutral (left) and charged (right) secondaries arriving to ADA plane. It can be seen how the new shielding protects the PMT boxes.

- ALICE has measured inelastic, single and double diffractive cross sections in pp collisions at 7 TeV at the LHC (run I).
- The ALICE Diffractive detector (AD) increases the pseudorapidity coverage from 8.8 to 12.1 units in η .
- This translates into a higher sensitivity to lower mass diffractive systems.
- AD has a great performance (good time resolution, beam-gas rejection) and is participating in run II data taking, collecting a large sample of inclusive diffractive events and double-gap triggers.
- Analysis and simulation work is ongoing. Expect news soon.

Thanks!

Back-up

track — **>** pseudo-track

Particle flux at A-Side (Z=1685 cm) You are looking towards the interaction point!

New Geometry (2017)

Simulation: Positive (left) and Negative (right) primaries arriving to ADA plane. The shadow of the compensator magnet located between ADA and the interaction point is clearly visible.

Ernesto Calvo

The ALICE experiment. View of the "A-Side"

L3 solenoid magnet

Compensating dipole magnet

2018-Nov-26

Ernesto Calvo

31