Outline - Supersymmetry (SUSY): an attractive extension of the SM - Searches for SUSY at ATLAS - Inclusive squarks/gluinos - stop/sbottom - Electroweakinos - Long-lived sparticles - The way forward - Supersymmetry (SUSY): symmetry between bosons and fermions - Implies new superpartners with spin ½ difference from SM particles - Ex.: top quark → stop quark (spin 0), Higgs → Higgsino (spin ½) - SUSY solves several problems/limitations of the SM at the same time - Hierarchy problem $$\Delta m_h^2 \sim \cdots \sim -\frac{3}{4\pi} y_t^2 \Lambda_{SM}^2 + \dots$$ Dark matter $$\sim 10^{38} \text{GeV}^2 \text{ if } \Lambda_{SM} = M_{Planck}!$$ Grand unification # SUSY is an attractive theory - Supersymmetry (SUSY): symmetry between bosons and fermions - Implies new superpartners with spin ½ difference from SM particles - Ex.: top quark → stop quark (spin 0), Higgs → Higgsino (spin ½) - SUSY solves several problems/limitations of the SM at the same time - Hierarchy problem $\Delta m_h^2 \sim \cdots \left(\right) \cdots \sim -\frac{3}{4\pi} y_t^2 \Lambda_{SM}^2 + \dots$ - Dark matter - Grand unification $$\sim 10^{38} \text{GeV}^2 \text{ if } \Lambda_{SM} = M_{Plan}$$ $$\Delta m_h^2 \sim \cdots \sim + \frac{3}{4\pi} y_t^2 \Lambda_{SM}^2 + \cdots$$ #### Where are the superpartners? - If supersymmetry was exact: the superpartners would be everywhere - SUSY must be broken: heavy superpartners - Fortunately, SUSY can still solve the SM problems even though it's broken - But, generally, they can't be too heavy either. $M_{SLISY} \sim \mathcal{O}(\text{TeV})$ ⇒ Superpartners could be discoverable at the LHC! #### Large collective effort to discover SUSY at the LHC! phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made. #### ATLAS detector is ideally suited for SUSY searches! - Currently in LHC Run 2: √s = 13 TeV - Excellent LHC performance: - ~x2 higher luminosity than design - Smooth operations for ATLAS - Collecting ~96% of LHC lumi - > 97% of detector channels operational - Manage to operate in high pile-up environment #### What would superpartners production look like? - Strongly-interacting superpartners have highest production cross-section - squarks, gluinos - In most SUSY models: the number of superpartners is conserved in an interaction - Called R-parity conservation - · Implies SUSY particles are pair-produced - All SUSY particles (except one) decay promptly - A decay chain ensues #### What would superpartners production look like? - The superpartners of the EWK gauge field mix to produce neutralinos and charginos - bino, wino, higgsino → $$\tilde{\chi}_1^0, \dots \tilde{\chi}_4^0; \; \tilde{\chi}_1^{\pm}, \; \tilde{\chi}_2^{\pm}$$ - R-parity conservation: the lightest SUSY particle (LSP) is typically stable - **→** Dark matter candidate! - Typically the $\tilde{\chi}_1^0$ #### Experimental signature: - lots of missing momentum (dark matter) - high-energy jets - sometimes charged leptons ### Searches for inclusive squarks and gluinos | | Model | e, μ, τ, γ | Jets | $m{E}_{ m T}^{ m miss}$ | $\int \mathcal{L} dt [fb]$ | ·¹] | Mass limit | | \sqrt{s} = 7, 8 TeV | \sqrt{s} = 13 TeV | Reference | |----------|--|------------------------------------|----------------------|-------------------------|----------------------------|---|------------|-----------|-----------------------|---|--------------------------| | S | $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$ | 0
mono-jet | 2-6 jets
1-3 jets | Yes
Yes | 36.1
36.1 | $ar{q}$ [2x, 8x Degen.] $ar{q}$ [1x, 8x Degen.] | 0.43 | 0.9 | 1.55 | $m(\tilde{\chi}_1^0)$ <100 GeV
$m(\tilde{q})$ - $m(\tilde{\chi}_1^0)$ =5 GeV | 1712.02332
1711.03301 | | Searches | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ | 0 | 2-6 jets | Yes | 36.1 | g
g | | Forbidden | 0.95-1.6 | $m(\tilde{\chi}_1^0)$ <200 GeV
$m(\tilde{\chi}_1^0)$ =900 GeV | 1712.02332
1712.02332 | | Ø. | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$ | 3 e, μ
ee, μμ | 4 jets
2 jets | Yes | 36.1
36.1 | \tilde{g} | | | 1.85 | $m(\tilde{\chi}_{1}^{0})$ <800 GeV $m(\tilde{g})$ - $m(\tilde{\chi}_{1}^{0})$ =50 GeV | 1706.03731
1805.11381 | | Inclusiv | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$ | 0 3 e , μ | 7-11 jets
4 jets | Yes | 36.1
36.1 | \tilde{g} | | 0.98 | 1.8 | $m(\tilde{\chi}_1^0) < 400 \text{GeV}$
$m(\tilde{g}) - m(\tilde{\chi}_1^0) = 200 \text{GeV}$ | 1708.02794
1706.03731 | | u I | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$ | 0-1 <i>e</i> , μ
3 <i>e</i> , μ | 3 <i>b</i>
4 jets | Yes | 36.1
36.1 | g
g | | | 1.25 | $m(\tilde{\chi}_1^0)$ <200 GeV $m(\tilde{g})$ - $m(\tilde{\chi}_1^0)$ =300 GeV | 1711.01901
1706.03731 | #### Summary of searches for inclusive squarks and gluinos - Unfortunately no excess observed so far - Limits on sparticle masses will improve only incrementally with luminosity - Moving toward complex techniques like machine learning #### An example: gluino to stop/sbottom • $\tilde{g} \to \tilde{t}t$, $\tilde{g} \to \tilde{b}b$ well motivated by naturalness - Several signal regions requiring ≥3 bjets, lots of missing energy and hadronic activity - Limits on gluino mass up-to 2.2 TeV #### Searches for stop and sbottom #### Summary of searches for stop and sbottom - Maybe the gluinos/squarks are too heavy to be seen at the LHC? - stop/sbottom are well motivated to by light by naturalness - → Very important focus at the LHC - But again unfortunately no excess so far - Limits on stop mass up-to ~1 TeV ## An example: $\tilde{b} \to b \tilde{\chi}_2^0$, $\tilde{\chi}_2^0 \to h \tilde{\chi}_1^0$ - Well motivated by naturalness - Targeting $h \to bb$ (60%) \to final state with 6 b-jets! - Several signal regions targeting ≥ 4 b-jets, large E_{T}^{miss} and hadronic activity, and reconstructed $h \rightarrow b\bar{b}$ candidate(s) - Limits on sbottom mass up-to 1.4 TeV ATLAS-CONF-2018-040 #### Searches for electroweakinos | | Model | e,μ, au,γ | lets ¹ | $E_{ m T}^{ m miss}$]. | £ dt[fb ⁻¹ |] | Mass li | mit | $\sqrt{s} = 7$, 8 TeV $\sqrt{s} = 13$ TeV | Reference | |--------------|---|-------------------------------------|-------------------|-------------------------|-----------------------|---|-----------|-----------|--|-------------------------------------| | | $ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ | 2-3 e, μ
ee, μμ | ≥1 | Yes
Yes | 36.1
36.1 | $\begin{array}{c} \tilde{\mathcal{X}}_1^{\pm}/\tilde{\mathcal{X}}_2^0 \\ \tilde{\mathcal{X}}_1^{\pm}/\tilde{\mathcal{X}}_2^0 \end{array}$ | 0.17 | 0.6 | $m(\tilde{\chi}_1^0)=0$
$m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=10$ GeV | 1403.5294, 1806.02293
1712.08119 | | | $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh | $\ell\ell/\ell\gamma\gamma/\ell bb$ | - | Yes | 20.3 | $\tilde{X}_{1}^{\pm}/\tilde{X}_{2}^{0}$ | 0.26 | | $m(\tilde{\chi}_1^0)=0$ | 1501.07110 | | EW
direct | ~+~∓.~0 ~+ ~0 | 2 τ | - | Yes | 36.1 | $\tilde{X}_1^{\pm}/\tilde{X}_2^0$ $\tilde{X}_1^{\pm}/\tilde{X}_2^0$ | 0.22 | 0.76 | $m(\tilde{\chi}_1^0)=0, m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0))$
$m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=100 \text{ GeV}, m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0))$ | 1708.07875
1708.07875 | | A ip | $\ell_{L,R}\ell_{L,R}, \ell \rightarrow \ell \tilde{\chi}_1^0$ | 2 e, μ
2 e, μ | 0
≥ 1 | Yes
Yes | 36.1
36.1 | ₹
₹ | 0.18 | 0.5 | $m(\tilde{\mathcal{X}}_1^0)=0$
$m(\tilde{\ell})-m(\tilde{\mathcal{X}}_1^0)=5$ GeV | 1803.02762
1712.08119 | | | $\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$ | $\overset{0}{4}\overset{e}{e},\mu$ | ≥ 3 <i>b</i>
0 | Yes
Yes | 36.1
36.1 | Ĥ
Ĥ | 0.13-0.23 | 0.29-0.88 | $BR(\tilde{\chi}_{1}^{0} \rightarrow h\tilde{G})=1$
$BR(\tilde{\chi}_{1}^{0} \rightarrow Z\tilde{G})=1$ | 1806.04030
1804.03602 | #### Summary of searches for direct electroweakino production - Pure $\chi_1^0 \chi_1^0$ cross-section tiny - Better to search for $\chi_1^+ \chi_2^0$ or $\chi_1^+ \chi_1^+$ - Which then typically decay to χ_1^0 via emitting a SM boson (W, Z, h) $$\chi_2^0 \rightarrow h\chi_1^0 \qquad \chi_2^0 \rightarrow Z\chi_1^0$$ $\chi_1^+ \rightarrow W^+\chi_1^0$ • Room for $m(\chi_1^0)$ down-to ~100 GeV, not as constrained as squark/gluino searches! # An example: Search for electroweakinos with recursive jigsaw reconstruction arXiv:1806.02293 • Search for $\chi_1^+\chi_2^0$ production in the 2/3-lepton channels $$m(\chi_2^0/\chi_1^+) - m(\chi_1^0) \gtrsim 100 \text{ GeV}$$ - Attempt to reconstruct the sparticles decay tree - Four signal regions with excesses ~ 1.4 3.0σ - Using only 2015-16 data → looking forward to adding 2017-18 data #### Searches for SUSY long-lived particles and RPV ^{*}Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made. #### Searches for SUSY long-lived particles - What if the accessible sparticles are long-lived? - Well motivated by naturalness and dark matter - Predicts compressed mass spectra of sparticles - More and more focus on these searches - Exotic, almost background-free signatures - Massive stable particle, disappearing tracks #### An example: pixel detector dE/dx - ATLAS pixel detector: 4 layers that can measure dE/dx - dE/dx ⇒ mass, if momentum is measured - SUSY particles can sometimes be (meta)stable - E.g. R-hadron in split-SUSY - Stable R-hadrons excluded with mass below 1890 GeV - Local 2.4σ excess at ~600 GeV - No signs of SUSY so far at the LHC - "Vanilla" natural SUSY significantly constrained - But still room left → very important to keep looking! - Constraints can be weakened in more complex SUSY models - NMSSM, RPV, stealth SUSY, hidden valley, twin higgs, etc. - And experimental constraints on electroweakinos are weaker - High-Luminosity LHC (2026+) will significantly improve the sensitivity to electroweakinos! Back-up slides ### Multi-b: MC generators | Process | Generator + fragmentation/hadronization | Tune | PDF set | Cross-section order | |----------------------------------|---|-------------|----------|---------------------| | Gbb/Gtb/Gtt | MadGraph5_aMC@NLO-2.2.2
+ Pythia v8.186 | A14 | NNPDF2.3 | NLO+NLL [30-35] | | $t\bar{t}$ | Powheg-Box v2
+ Pythia-8.230 | A14 | NNPDF3.0 | NNLO+NNLL [36] | | Single top Wt -channel (s/t) | Powheg-Box v1 (v2)
+ Pythia-6.428 (-8.230) | PERUGIA2012 | CT10 | NNLO+NNLL [37–39] | | $t\bar{t}W/t\bar{t}Z$ | MadGraph5_aMC@NLO-2.2.2
+ Pythia-8.186 | A14 | NNPDF2.3 | NLO [40] | | 4-tops | MadGraph-2.2.2
+ Pythia-8.186 | A14 | NNPDF2.3 | NLO [40] | | $t\bar{t}H$ | MadGraph5_aMC@NLO-2.2.1
+ Herwig++-2.7.1 | UEEE5 | CT10 | NLO [41] | | Dibosons
WW, WZ, ZZ | Sherpa-2.2.1 | Default | NNPDF3.0 | NLO [42, 43] | | W/Z+jets | Sherpa-2.2.1 | Default | NNPDF3.0 | NNLO [44] | #### Multi-b: Signal and control regions: cut&count | Gtt 1-lepton Criteria common to all regions: ≥ 1 signal lepton, $N_{b\text{-jets}} \geq 3$ | | | | | | | | | |--|----------|------------------|------------------|-------------------------------------|----------------------|------------------------|----------------|--| | Targeted kinematics | Туре | N _{jet} | m_{T} | $m_{\mathrm{T,min}}^{b ext{-jets}}$ | $E_{ m T}^{ m miss}$ | $m_{ m eff}^{ m incl}$ | M_J^Σ | | | Region B (Boosted, Large Δm) | SR
CR | ≥ 5
= 5 | > 150
< 150 | > 120 | > 500
> 300 | > 2200
> 1700 | > 200
> 150 | | | Region M
(Moderate Δm) | SR
CR | ≥ 6
= 6 | > 150
< 150 | > 160 | > 450
> 400 | > 1800
> 1500 | > 200
> 100 | | | Region C (Compressed, small Δm) | SR
CR | ≥ 7
= 7 | > 150
< 150 | > 160
- | > 350
> 350 | > 1000
> 1000 | - | | Gtt 0-lepton | Targeted kinematics | Туре | $N_{\rm lepton}$ | $N_{b ext{-jets}}$ | N _{jet} | $\Delta\phi_{ m min}^{4 m j}$ | m_{T} | $m_{ m T,min}^{b ext{-jets}}$ | $E_{ m T}^{ m miss}$ | $m_{ m eff}^{ m incl}$ | M_J^Σ | |------------------------------------|------|------------------|--------------------|------------------|-------------------------------|------------------|-------------------------------|----------------------|------------------------|--------------| | Region B | SR | = 0 | ≥ 3 | ≥ 7 | > 0.4 | - | > 60 | > 350 | > 2600 | > 300 | | (Boosted, Large Δm) | CR | = 1 | ≥ 3 | ≥ 6 | - | < 150 | - | > 275 | > 1800 | > 300 | | Region M | SR | = 0 | ≥ 3 | ≥ 7 | > 0.4 | _ | > 120 | > 500 | > 1800 | > 200 | | (Moderate Δm) | CR | = 1 | ≥ 3 | ≥ 6 | - | < 150 | - | > 400 | > 1700 | > 200 | | Region C | SR | = 0 | ≥ 4 | ≥ 8 | > 0.4 | _ | > 120 | > 250 | > 1000 | > 100 | | (Compressed, moderate Δm) | CR | = 1 | ≥ 4 | ≥ 7 | _ | < 150 | - | > 250 | > 1000 | > 100 | #### Multi-b: Signal and control regions: cut&count **Gbb**Criteria common to all regions: $N_{\text{jet}} \ge 4$ | Targeted kinematics | Туре | N _{lepton} | $N_{b ext{-jets}}$ | $\Delta\phi_{ m min}^{4 m j}$ | m_{T} | $m_{\mathrm{T,min}}^{b ext{-jets}}$ | $E_{ m T}^{ m miss}$ | $m_{ m eff}$ | Others | |-------------------------------------|------|---------------------|--------------------|-------------------------------|------------------|-------------------------------------|----------------------|--------------|---| | Region B | SR | = 0 | ≥ 3 | > 0.4 | _ | - | > 400 | > 2800 | _ | | (Boosted, Large Δm) | CR | = 1 | ≥ 3 | - | < 150 | - | > 400 | > 2500 | _ | | Region M | SR | = 0 | ≥ 4 | > 0.4 | _ | > 90 | > 450 | > 1600 | _ | | (Moderate Δm) | CR | = 1 | ≥ 4 | - | < 150 | - | > 300 | > 1600 | _ | | Region C | SR | = 0 | ≥ 4 | > 0.4 | _ | > 155 | > 450 | _ | _ | | (Compressed, small Δm) | CR | = 1 | ≥ 4 | - | < 150 | - | > 375 | - | _ | | Region VC | SR | = 0 | ≥ 3 | > 0.4 | _ | > 100 | > 600 | _ | $p_{\rm T}^{\rm j_1} > 400, \rm j_1 \neq b,$ | | (Very Compressed,
very small Δm) | CR | = 1 | ≥ 3 | - | < 150 | - | > 600 | - | $\Delta \phi^{j_1} > 2.5$ | #### Multi-b: Signal and control regions: multi-bin | $High-N_{jet}$ regions | | | | | | | | | | | |---|-------|-----------------|-------------------------------|------------------|------------------|-------------------------------------|--------------|----------------------|--------------|--| | Criteria common to all regions: $N_{b\text{-jets}} \ge 3$ | | | | | | | | | | | | Targeted kinematics | Type | $N_{ m lepton}$ | $\Delta\phi_{ m min}^{4 m j}$ | m_{T} | N _{jet} | $m_{\mathrm{T,min}}^{b ext{-jets}}$ | M_J^Σ | $E_{ m T}^{ m miss}$ | $m_{ m eff}$ | | | High- $m_{ m eff}$ | SR-0L | = 0 | > 0.4 | - | ≥ 7 | > 100 | > 200 | > 400 | > 2500 | | | (HH) | SR-1L | ≥ 1 | - | > 150 | ≥ 6 | > 120 | > 200 | > 500 | > 2300 | | | (Large Δm) | CR | ≥ 1 | - | < 150 | ≥ 6 | > 60 | > 150 | > 300 | > 2100 | | | Intermediate-m _{eff} | SR-0L | = 0 | > 0.4 | - | ≥ 9 | > 140 | > 150 | > 300 | [1800, 250 | | | (HI) | SR-1L | ≥ 1 | - | > 150 | ≥ 8 | > 140 | > 150 | > 300 | [1800, 230 | | | (Intermediate Δm) | CR | ≥ 1 | - | < 150 | ≥ 8 | > 60 | > 150 | > 200 | [1700, 210 | | | Low- $m_{\rm eff}$ | SR-0L | = 0 | > 0.4 | - | ≥ 9 | > 140 | - | > 300 | [900, 1800 | | | (HL) | SR-1L | ≥ 1 | - | > 150 | ≥ 8 | > 140 | - | > 300 | [900, 1800 | | | (Small Δm) | CR | ≥ 1 | - | < 150 | ≥ 8 | > 130 | - | > 250 | [900, 1700 | | #### Intermediate-N_{jet} regions Criteria common to all regions: $N_{b-jets} \ge 3$ | Targeted kinematics | Type | $N_{\rm lepton}$ | $\Delta\phi_{ m min}^{4 m j}$ | $m_{ m T}$ | N _{jet} | $j_1 = b \text{ or } \Delta \phi^{j_1} \le 2.9$ | $m_{\mathrm{T,min}}^{b ext{-jets}}$ | M_J^Σ | $E_{ m T}^{ m miss}$ | $m_{ m eff}$ | |----------------------------|-------|------------------|-------------------------------|------------|------------------|---|-------------------------------------|--------------|----------------------|--------------| | Intermediate-meff | SR-0L | = 0 | > 0.4 | _ | [7,8] | ✓ | > 140 | > 150 | > 300 | [1600, 2500] | | (II) | SR-1L | ≥ 1 | - | > 150 | [6, 7] | _ | > 140 | > 150 | > 300 | [1600, 2300] | | (Intermediate Δm) | CR | ≥ 1 | - | < 150 | [6,7] | ✓ | > 100 | > 150 | > 300 | [1600, 2100] | | Low-meff | SR-0L | = 0 | > 0.4 | - | [7,8] | ✓ | > 140 | - | > 300 | [800, 1600] | | (IL) | SR-1L | ≥ 1 | - | > 150 | [6,7] | - | > 140 | - | > 300 | [800, 1600] | | (Low Δm) | CR | ≥ 1 | - | < 150 | [6,7] | ✓ | > 130 | - | > 300 | [800, 1600] | #### Multi-b: Signal and control regions: multi-bin CR | | Low- $N_{\rm jet}$ regions | | | | | | | | | | | | |------------------------------------|---|-----------------|-------------------------------|------------|------------------|---|---------------------------------|-------------------------------|----------------------------------|--------------|--|--| | | Criteria common to all regions: $N_{b\text{-jets}} \ge 3$ | | | | | | | | | | | | | Targeted kinematics | Type | $N_{ m lepton}$ | $\Delta\phi_{ m min}^{4 m j}$ | $m_{ m T}$ | N _{jet} | $j_1 = b \text{ or } \Delta \phi^{j_1} \le 2.9$ | $p_{\mathrm{T}}^{\mathrm{j_4}}$ | $m_{ m T,min}^{b ext{-jets}}$ | $E_{\mathrm{T}}^{\mathrm{miss}}$ | $m_{ m eff}$ | | | | High-m _{eff} (LH) | SR | = 0 | > 0.4 | - | [4, 6] | _ | > 90 | - | > 300 | > 2400 | | | | (Large Δm) | CR | ≥ 1 | - | < 150 | [4,5] | _ | - | - | > 200 | > 2100 | | | | Intermediate-m _{eff} (LI) | SR | = 0 | > 0.4 | - | [4, 6] | ✓ | > 90 | > 140 | > 350 | [1400, 2400] | | | | (Intermediate Δm) | CR | ≥ 1 | - | < 150 | [4, 5] | ✓ | > 70 | - | > 300 | [1400, 2000] | | | | Low-m _{eff} (LL) | SR | = 0 | > 0.4 | - | [4, 6] | ✓ | > 90 | > 140 | > 350 | [800, 1400] | | | | $(\text{Low }\Delta m)$ | CR | ≥ 1 | - | < 150 | [4, 5] | ✓ | > 70 | - | > 300 | [800, 1400] | | | | | ISR regions | | | | | | | | | | | |-----------------|---|------------|------------------|-------------------------------------|----------------------|--------------|--|--|--|--|--| | Criteria comn | Criteria common to all regions: $N_{b\text{-jets}} \ge 3$, $\Delta \phi^{j_1} > 2.9$, $p_{T_1}^{j} > 400$ GeV and $j_1 \ne b$ | | | | | | | | | | | | $N_{ m lepton}$ | $\Delta\phi_{ m min}^{4 m j}$ | $m_{ m T}$ | N _{jet} | $m_{\mathrm{T,min}}^{b ext{-jets}}$ | $E_{ m T}^{ m miss}$ | $m_{ m eff}$ | | | | | | | = 0 | > 0.4 | _ | [4,8] | > 100 | > 600 | < 2200 | | | | | | | ≥ 1 | - | < 150 | [4,7] | - | > 400 | < 2000 | | | | | | #### Multi-b: Systematic uncertainties #### Multi-b: Validation regions #### Sbottom analysis | | | | - | | | | | | | |---|-------|------------------|------------------|-------|--|--|--|--|--| | Variable | SRA | SRA-L | SRA-M | SRA-H | | | | | | | N _{leptons} (baseline) | = 0 | | | | | | | | | | $N_{ m jets}$ | ≥ 6 | | | | | | | | | | $N_{\mathrm{b-jets}}$ | | 2 | ≥ 4 | | | | | | | | $E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV] | | > | 250 | | | | | | | | $\min \Delta \phi(\text{jet}_{1-4}, \mathbf{p}_{\text{T}}^{\text{miss}})$ [rad] | | > | 0.4 | | | | | | | | au veto | | 7 | <i>Yes</i> | | | | | | | | $p_{\mathrm{T}}(b_1)$ [GeV] | | > | 200 | | | | | | | | $\Delta R_{\rm max}(b,b)$ | | > | 2.5 | | | | | | | | $\Delta R_{\text{max-min}}(b, b)$ | | < | 2.5 | | | | | | | | $m(h_{\rm cand})$ [GeV] | | | | | | | | | | | $m_{\rm eff}$ [TeV] | > 1.0 | \in [1.0, 1.2] | \in [1.2, 1.5] | > 1.5 | | | | | | | Variable | SRB | |---|-----------------| | N _{leptons} (baseline) | = 0 | | $N_{ m jets}$ | ≥ 5 | | $N_{\mathrm{b-jets}}$ | ≥ 4 | | $E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV] | > 300 | | $\min \Delta \phi(\text{jet}_{1-4}, \mathbf{p}_{\text{T}}^{\text{miss}}) \text{ [rad]}$ | > 0.4 | | au veto | Yes | | $m(h_{\text{cand1}}, h_{\text{cand2}})_{\text{avg}} \text{ [GeV]}$ | \in [50, 140] | | non-b leading jet | Yes | | $p_{\mathrm{T}}(j_1)$ [GeV] | > 300 | | $ \Delta\phi(j_1,E_{\mathrm{T}}^{\mathrm{miss}}) $ [rad] | > 2.8 | | $m_{\rm eff}$ [TeV] | > 1 | | /ariable | SRC25 | SRC27 | SRC30 | SRC32 | | | | | |---|-------|-------|-------|-------|--|--|--|--| | V _{leptons} (baseline) | = 0 | | | | | | | | | $V_{ m jets}$ | ≥ 4 | | | | | | | | | V_{b-jets} | ≥ 3 | | | | | | | | | E ^{miss} [GeV] | > 250 | | | | | | | | | $\min \Delta \phi(\text{jet}_{1-4}, \mathbf{p}_{\text{T}}^{\text{miss}}) \text{ [rad]}$ | > 0.4 | | | | | | | | | 3 | > 25 | > 27 | > 30 | > 32 | | | | | #### Sbottom analysis #### Long-lived particles #### Pixel dE/dx Table 1: Summary of the different selection requirements applied to the signal region (SR), the validation region (VR), and the control regions (CR). | | SR | VR | p-CR | | dE/dx-CR | | |---|-------|--------|--------|--------|----------|--------| | | | | for SR | for VR | for SR | for VR | | Track Momentum [GeV] | >150 | 50–150 | >150 | 50–150 | >150 | 50–150 | | $E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV] | >170 | | >170 | | <170 | | | Ionisation [MeV g ⁻¹ cm ²] | > 1.8 | | < 1.8 | | _ | | #### Pixel dE/dx