

Outline

- Supersymmetry (SUSY): an attractive extension of the SM
- Searches for SUSY at ATLAS
 - Inclusive squarks/gluinos
 - stop/sbottom
 - Electroweakinos
 - Long-lived sparticles
- The way forward

- Supersymmetry (SUSY): symmetry between bosons and fermions
 - Implies new superpartners with spin ½ difference from SM particles
 - Ex.: top quark → stop quark (spin 0), Higgs → Higgsino (spin ½)
- SUSY solves several problems/limitations of the SM at the same time
 - Hierarchy problem

$$\Delta m_h^2 \sim \cdots \sim -\frac{3}{4\pi} y_t^2 \Lambda_{SM}^2 + \dots$$

Dark matter

$$\sim 10^{38} \text{GeV}^2 \text{ if } \Lambda_{SM} = M_{Planck}!$$

Grand unification

SUSY is an attractive theory

- Supersymmetry (SUSY): symmetry between bosons and fermions
 - Implies new superpartners with spin ½ difference from SM particles
 - Ex.: top quark → stop quark (spin 0), Higgs → Higgsino (spin ½)
- SUSY solves several problems/limitations of the SM at the same time
 - Hierarchy problem

 $\Delta m_h^2 \sim \cdots \left(\right) \cdots \sim -\frac{3}{4\pi} y_t^2 \Lambda_{SM}^2 + \dots$

- Dark matter
- Grand unification

$$\sim 10^{38} \text{GeV}^2 \text{ if } \Lambda_{SM} = M_{Plan}$$

$$\Delta m_h^2 \sim \cdots \sim + \frac{3}{4\pi} y_t^2 \Lambda_{SM}^2 + \cdots$$

Where are the superpartners?

- If supersymmetry was exact: the superpartners would be everywhere
- SUSY must be broken: heavy superpartners
 - Fortunately, SUSY can still solve the SM problems even though it's broken
- But, generally, they can't be too heavy either. $M_{SLISY} \sim \mathcal{O}(\text{TeV})$

⇒ Superpartners could be discoverable at the LHC!

Large collective effort to discover SUSY at the LHC!

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

ATLAS detector is ideally suited for SUSY searches!

- Currently in LHC Run 2: √s = 13 TeV
- Excellent LHC performance:
 - ~x2 higher luminosity than design
- Smooth operations for ATLAS
 - Collecting ~96% of LHC lumi
 - > 97% of detector channels operational
 - Manage to operate in high pile-up environment

What would superpartners production look like?

- Strongly-interacting superpartners have highest production cross-section
 - squarks, gluinos
- In most SUSY models: the number of superpartners is conserved in an interaction
 - Called R-parity conservation
 - · Implies SUSY particles are pair-produced
- All SUSY particles (except one) decay promptly
 - A decay chain ensues

What would superpartners production look like?

- The superpartners of the EWK gauge field mix to produce neutralinos and charginos
 - bino, wino, higgsino →

$$\tilde{\chi}_1^0, \dots \tilde{\chi}_4^0; \; \tilde{\chi}_1^{\pm}, \; \tilde{\chi}_2^{\pm}$$

- R-parity conservation: the lightest SUSY particle (LSP) is typically stable
 - **→** Dark matter candidate!
 - Typically the $\tilde{\chi}_1^0$

Experimental signature:

- lots of missing momentum (dark matter)
- high-energy jets
- sometimes charged leptons

Searches for inclusive squarks and gluinos

	Model	e, μ, τ, γ	Jets	$m{E}_{ m T}^{ m miss}$	$\int \mathcal{L} dt [fb]$	·¹]	Mass limit		\sqrt{s} = 7, 8 TeV	\sqrt{s} = 13 TeV	Reference
S	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$	0 mono-jet	2-6 jets 1-3 jets	Yes Yes	36.1 36.1	$ar{q}$ [2x, 8x Degen.] $ar{q}$ [1x, 8x Degen.]	0.43	0.9	1.55	$m(\tilde{\chi}_1^0)$ <100 GeV $m(\tilde{q})$ - $m(\tilde{\chi}_1^0)$ =5 GeV	1712.02332 1711.03301
Searches	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$	0	2-6 jets	Yes	36.1	g g		Forbidden	0.95-1.6	$m(\tilde{\chi}_1^0)$ <200 GeV $m(\tilde{\chi}_1^0)$ =900 GeV	1712.02332 1712.02332
Ø.	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	3 e, μ ee, μμ	4 jets 2 jets	Yes	36.1 36.1	\tilde{g}			1.85	$m(\tilde{\chi}_{1}^{0})$ <800 GeV $m(\tilde{g})$ - $m(\tilde{\chi}_{1}^{0})$ =50 GeV	1706.03731 1805.11381
Inclusiv	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 3 e , μ	7-11 jets 4 jets	Yes	36.1 36.1	\tilde{g}		0.98	1.8	$m(\tilde{\chi}_1^0) < 400 \text{GeV}$ $m(\tilde{g}) - m(\tilde{\chi}_1^0) = 200 \text{GeV}$	1708.02794 1706.03731
u I	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$	0-1 <i>e</i> , μ 3 <i>e</i> , μ	3 <i>b</i> 4 jets	Yes	36.1 36.1	g g			1.25	$m(\tilde{\chi}_1^0)$ <200 GeV $m(\tilde{g})$ - $m(\tilde{\chi}_1^0)$ =300 GeV	1711.01901 1706.03731

Summary of searches for inclusive squarks and gluinos

- Unfortunately no excess observed so far
- Limits on sparticle masses will improve only incrementally with luminosity
 - Moving toward complex techniques like machine learning

An example: gluino to stop/sbottom

• $\tilde{g} \to \tilde{t}t$, $\tilde{g} \to \tilde{b}b$ well motivated by naturalness

- Several signal regions requiring ≥3 bjets, lots of missing energy and hadronic activity
- Limits on gluino mass up-to 2.2 TeV

Searches for stop and sbottom

Summary of searches for stop and sbottom

- Maybe the gluinos/squarks are too heavy to be seen at the LHC?
- stop/sbottom are well motivated to by light by naturalness
 - → Very important focus at the LHC
- But again unfortunately no excess so far
 - Limits on stop mass up-to ~1 TeV

An example: $\tilde{b} \to b \tilde{\chi}_2^0$, $\tilde{\chi}_2^0 \to h \tilde{\chi}_1^0$

- Well motivated by naturalness
- Targeting $h \to bb$ (60%) \to final state with 6 b-jets!
- Several signal regions targeting ≥ 4 b-jets, large E_{T}^{miss} and hadronic activity, and reconstructed $h \rightarrow b\bar{b}$ candidate(s)
- Limits on sbottom mass up-to 1.4
 TeV

ATLAS-CONF-2018-040

Searches for electroweakinos

	Model	e,μ, au,γ	lets ¹	$E_{ m T}^{ m miss}$].	£ dt[fb ⁻¹]	Mass li	mit	$\sqrt{s} = 7$, 8 TeV $\sqrt{s} = 13$ TeV	Reference
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	2-3 e, μ ee, μμ	≥1	Yes Yes	36.1 36.1	$\begin{array}{c} \tilde{\mathcal{X}}_1^{\pm}/\tilde{\mathcal{X}}_2^0 \\ \tilde{\mathcal{X}}_1^{\pm}/\tilde{\mathcal{X}}_2^0 \end{array}$	0.17	0.6	$m(\tilde{\chi}_1^0)=0$ $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=10$ GeV	1403.5294, 1806.02293 1712.08119
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh	$\ell\ell/\ell\gamma\gamma/\ell bb$	-	Yes	20.3	$\tilde{X}_{1}^{\pm}/\tilde{X}_{2}^{0}$	0.26		$m(\tilde{\chi}_1^0)=0$	1501.07110
EW direct	~+~∓.~0 ~+ ~0	2 τ	-	Yes	36.1	$\tilde{X}_1^{\pm}/\tilde{X}_2^0$ $\tilde{X}_1^{\pm}/\tilde{X}_2^0$	0.22	0.76	$m(\tilde{\chi}_1^0)=0, m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0))$ $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=100 \text{ GeV}, m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0))$	1708.07875 1708.07875
A ip	$\ell_{L,R}\ell_{L,R}, \ell \rightarrow \ell \tilde{\chi}_1^0$	2 e, μ 2 e, μ	0 ≥ 1	Yes Yes	36.1 36.1	₹ ₹	0.18	0.5	$m(\tilde{\mathcal{X}}_1^0)=0$ $m(\tilde{\ell})-m(\tilde{\mathcal{X}}_1^0)=5$ GeV	1803.02762 1712.08119
	$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$	$\overset{0}{4}\overset{e}{e},\mu$	≥ 3 <i>b</i> 0	Yes Yes	36.1 36.1	Ĥ Ĥ	0.13-0.23	0.29-0.88	$BR(\tilde{\chi}_{1}^{0} \rightarrow h\tilde{G})=1$ $BR(\tilde{\chi}_{1}^{0} \rightarrow Z\tilde{G})=1$	1806.04030 1804.03602

Summary of searches for direct electroweakino production

- Pure $\chi_1^0 \chi_1^0$ cross-section tiny
- Better to search for $\chi_1^+ \chi_2^0$ or $\chi_1^+ \chi_1^+$
- Which then typically decay to χ_1^0 via emitting a SM boson (W, Z, h)

$$\chi_2^0 \rightarrow h\chi_1^0 \qquad \chi_2^0 \rightarrow Z\chi_1^0$$
 $\chi_1^+ \rightarrow W^+\chi_1^0$

• Room for $m(\chi_1^0)$ down-to ~100 GeV, not as constrained as squark/gluino searches!

An example: Search for electroweakinos with recursive jigsaw reconstruction

arXiv:1806.02293

• Search for $\chi_1^+\chi_2^0$ production in the 2/3-lepton channels

$$m(\chi_2^0/\chi_1^+) - m(\chi_1^0) \gtrsim 100 \text{ GeV}$$

- Attempt to reconstruct the sparticles decay tree
- Four signal regions with excesses ~ 1.4 3.0σ
- Using only 2015-16 data → looking forward to adding 2017-18 data

Searches for SUSY long-lived particles and RPV

^{*}Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Searches for SUSY long-lived particles

- What if the accessible sparticles are long-lived?
- Well motivated by naturalness and dark matter
 - Predicts compressed mass spectra of sparticles
- More and more focus on these searches
- Exotic, almost background-free signatures
 - Massive stable particle, disappearing tracks

An example: pixel detector dE/dx

- ATLAS pixel detector: 4 layers that can measure dE/dx
 - dE/dx ⇒ mass, if momentum is measured
- SUSY particles can sometimes be (meta)stable
 - E.g. R-hadron in split-SUSY
- Stable R-hadrons excluded with mass below 1890 GeV
 - Local 2.4σ excess at ~600 GeV

- No signs of SUSY so far at the LHC
- "Vanilla" natural SUSY significantly constrained
 - But still room left → very important to keep looking!
- Constraints can be weakened in more complex SUSY models
 - NMSSM, RPV, stealth SUSY, hidden valley, twin higgs, etc.
- And experimental constraints on electroweakinos are weaker
 - High-Luminosity LHC (2026+) will significantly improve the sensitivity to electroweakinos!

Back-up slides

Multi-b: MC generators

Process	Generator + fragmentation/hadronization	Tune	PDF set	Cross-section order
Gbb/Gtb/Gtt	MadGraph5_aMC@NLO-2.2.2 + Pythia v8.186	A14	NNPDF2.3	NLO+NLL [30-35]
$t\bar{t}$	Powheg-Box v2 + Pythia-8.230	A14	NNPDF3.0	NNLO+NNLL [36]
Single top Wt -channel (s/t)	Powheg-Box v1 (v2) + Pythia-6.428 (-8.230)	PERUGIA2012	CT10	NNLO+NNLL [37–39]
$t\bar{t}W/t\bar{t}Z$	MadGraph5_aMC@NLO-2.2.2 + Pythia-8.186	A14	NNPDF2.3	NLO [40]
4-tops	MadGraph-2.2.2 + Pythia-8.186	A14	NNPDF2.3	NLO [40]
$t\bar{t}H$	MadGraph5_aMC@NLO-2.2.1 + Herwig++-2.7.1	UEEE5	CT10	NLO [41]
Dibosons WW, WZ, ZZ	Sherpa-2.2.1	Default	NNPDF3.0	NLO [42, 43]
W/Z+jets	Sherpa-2.2.1	Default	NNPDF3.0	NNLO [44]

Multi-b: Signal and control regions: cut&count

Gtt 1-lepton Criteria common to all regions: ≥ 1 signal lepton, $N_{b\text{-jets}} \geq 3$								
Targeted kinematics	Туре	N _{jet}	m_{T}	$m_{\mathrm{T,min}}^{b ext{-jets}}$	$E_{ m T}^{ m miss}$	$m_{ m eff}^{ m incl}$	M_J^Σ	
Region B (Boosted, Large Δm)	SR CR	≥ 5 = 5	> 150 < 150	> 120	> 500 > 300	> 2200 > 1700	> 200 > 150	
Region M (Moderate Δm)	SR CR	≥ 6 = 6	> 150 < 150	> 160	> 450 > 400	> 1800 > 1500	> 200 > 100	
Region C (Compressed, small Δm)	SR CR	≥ 7 = 7	> 150 < 150	> 160 -	> 350 > 350	> 1000 > 1000	-	

Gtt 0-lepton

Targeted kinematics	Туре	$N_{\rm lepton}$	$N_{b ext{-jets}}$	N _{jet}	$\Delta\phi_{ m min}^{4 m j}$	m_{T}	$m_{ m T,min}^{b ext{-jets}}$	$E_{ m T}^{ m miss}$	$m_{ m eff}^{ m incl}$	M_J^Σ
Region B	SR	= 0	≥ 3	≥ 7	> 0.4	-	> 60	> 350	> 2600	> 300
(Boosted, Large Δm)	CR	= 1	≥ 3	≥ 6	-	< 150	-	> 275	> 1800	> 300
Region M	SR	= 0	≥ 3	≥ 7	> 0.4	_	> 120	> 500	> 1800	> 200
(Moderate Δm)	CR	= 1	≥ 3	≥ 6	-	< 150	-	> 400	> 1700	> 200
Region C	SR	= 0	≥ 4	≥ 8	> 0.4	_	> 120	> 250	> 1000	> 100
(Compressed, moderate Δm)	CR	= 1	≥ 4	≥ 7	_	< 150	-	> 250	> 1000	> 100

Multi-b: Signal and control regions: cut&count

GbbCriteria common to all regions: $N_{\text{jet}} \ge 4$

Targeted kinematics	Туре	N _{lepton}	$N_{b ext{-jets}}$	$\Delta\phi_{ m min}^{4 m j}$	m_{T}	$m_{\mathrm{T,min}}^{b ext{-jets}}$	$E_{ m T}^{ m miss}$	$m_{ m eff}$	Others
Region B	SR	= 0	≥ 3	> 0.4	_	-	> 400	> 2800	_
(Boosted, Large Δm)	CR	= 1	≥ 3	-	< 150	-	> 400	> 2500	_
Region M	SR	= 0	≥ 4	> 0.4	_	> 90	> 450	> 1600	_
(Moderate Δm)	CR	= 1	≥ 4	-	< 150	-	> 300	> 1600	_
Region C	SR	= 0	≥ 4	> 0.4	_	> 155	> 450	_	_
(Compressed, small Δm)	CR	= 1	≥ 4	-	< 150	-	> 375	-	_
Region VC	SR	= 0	≥ 3	> 0.4	_	> 100	> 600	_	$p_{\rm T}^{\rm j_1} > 400, \rm j_1 \neq b,$
(Very Compressed, very small Δm)	CR	= 1	≥ 3	-	< 150	-	> 600	-	$\Delta \phi^{j_1} > 2.5$

Multi-b: Signal and control regions: multi-bin

$High-N_{jet}$ regions										
Criteria common to all regions: $N_{b\text{-jets}} \ge 3$										
Targeted kinematics	Type	$N_{ m lepton}$	$\Delta\phi_{ m min}^{4 m j}$	m_{T}	N _{jet}	$m_{\mathrm{T,min}}^{b ext{-jets}}$	M_J^Σ	$E_{ m T}^{ m miss}$	$m_{ m eff}$	
High- $m_{ m eff}$	SR-0L	= 0	> 0.4	-	≥ 7	> 100	> 200	> 400	> 2500	
(HH)	SR-1L	≥ 1	-	> 150	≥ 6	> 120	> 200	> 500	> 2300	
(Large Δm)	CR	≥ 1	-	< 150	≥ 6	> 60	> 150	> 300	> 2100	
Intermediate-m _{eff}	SR-0L	= 0	> 0.4	-	≥ 9	> 140	> 150	> 300	[1800, 250	
(HI)	SR-1L	≥ 1	-	> 150	≥ 8	> 140	> 150	> 300	[1800, 230	
(Intermediate Δm)	CR	≥ 1	-	< 150	≥ 8	> 60	> 150	> 200	[1700, 210	
Low- $m_{\rm eff}$	SR-0L	= 0	> 0.4	-	≥ 9	> 140	-	> 300	[900, 1800	
(HL)	SR-1L	≥ 1	-	> 150	≥ 8	> 140	-	> 300	[900, 1800	
(Small Δm)	CR	≥ 1	-	< 150	≥ 8	> 130	-	> 250	[900, 1700	

Intermediate-N_{jet} regions

Criteria common to all regions: $N_{b-jets} \ge 3$

Targeted kinematics	Type	$N_{\rm lepton}$	$\Delta\phi_{ m min}^{4 m j}$	$m_{ m T}$	N _{jet}	$j_1 = b \text{ or } \Delta \phi^{j_1} \le 2.9$	$m_{\mathrm{T,min}}^{b ext{-jets}}$	M_J^Σ	$E_{ m T}^{ m miss}$	$m_{ m eff}$
Intermediate-meff	SR-0L	= 0	> 0.4	_	[7,8]	✓	> 140	> 150	> 300	[1600, 2500]
(II)	SR-1L	≥ 1	-	> 150	[6, 7]	_	> 140	> 150	> 300	[1600, 2300]
(Intermediate Δm)	CR	≥ 1	-	< 150	[6,7]	✓	> 100	> 150	> 300	[1600, 2100]
Low-meff	SR-0L	= 0	> 0.4	-	[7,8]	✓	> 140	-	> 300	[800, 1600]
(IL)	SR-1L	≥ 1	-	> 150	[6,7]	-	> 140	-	> 300	[800, 1600]
(Low Δm)	CR	≥ 1	-	< 150	[6,7]	✓	> 130	-	> 300	[800, 1600]

Multi-b: Signal and control regions: multi-bin

CR

	Low- $N_{\rm jet}$ regions											
	Criteria common to all regions: $N_{b\text{-jets}} \ge 3$											
Targeted kinematics	Type	$N_{ m lepton}$	$\Delta\phi_{ m min}^{4 m j}$	$m_{ m T}$	N _{jet}	$j_1 = b \text{ or } \Delta \phi^{j_1} \le 2.9$	$p_{\mathrm{T}}^{\mathrm{j_4}}$	$m_{ m T,min}^{b ext{-jets}}$	$E_{\mathrm{T}}^{\mathrm{miss}}$	$m_{ m eff}$		
High-m _{eff} (LH)	SR	= 0	> 0.4	-	[4, 6]	_	> 90	-	> 300	> 2400		
(Large Δm)	CR	≥ 1	-	< 150	[4,5]	_	-	-	> 200	> 2100		
Intermediate-m _{eff} (LI)	SR	= 0	> 0.4	-	[4, 6]	✓	> 90	> 140	> 350	[1400, 2400]		
(Intermediate Δm)	CR	≥ 1	-	< 150	[4, 5]	✓	> 70	-	> 300	[1400, 2000]		
Low-m _{eff} (LL)	SR	= 0	> 0.4	-	[4, 6]	✓	> 90	> 140	> 350	[800, 1400]		
$(\text{Low }\Delta m)$	CR	≥ 1	-	< 150	[4, 5]	✓	> 70	-	> 300	[800, 1400]		

	ISR regions										
Criteria comn	Criteria common to all regions: $N_{b\text{-jets}} \ge 3$, $\Delta \phi^{j_1} > 2.9$, $p_{T_1}^{j} > 400$ GeV and $j_1 \ne b$										
$N_{ m lepton}$	$\Delta\phi_{ m min}^{4 m j}$	$m_{ m T}$	N _{jet}	$m_{\mathrm{T,min}}^{b ext{-jets}}$	$E_{ m T}^{ m miss}$	$m_{ m eff}$					
= 0	> 0.4	_	[4,8]	> 100	> 600	< 2200					
≥ 1	-	< 150	[4,7]	-	> 400	< 2000					

Multi-b: Systematic uncertainties

Multi-b: Validation regions

Sbottom analysis

			-						
Variable	SRA	SRA-L	SRA-M	SRA-H					
N _{leptons} (baseline)	= 0								
$N_{ m jets}$	≥ 6								
$N_{\mathrm{b-jets}}$		2	≥ 4						
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]		>	250						
$\min \Delta \phi(\text{jet}_{1-4}, \mathbf{p}_{\text{T}}^{\text{miss}})$ [rad]		>	0.4						
au veto		7	<i>Yes</i>						
$p_{\mathrm{T}}(b_1)$ [GeV]		>	200						
$\Delta R_{\rm max}(b,b)$		>	2.5						
$\Delta R_{\text{max-min}}(b, b)$		<	2.5						
$m(h_{\rm cand})$ [GeV]									
$m_{\rm eff}$ [TeV]	> 1.0	\in [1.0, 1.2]	\in [1.2, 1.5]	> 1.5					

Variable	SRB
N _{leptons} (baseline)	= 0
$N_{ m jets}$	≥ 5
$N_{\mathrm{b-jets}}$	≥ 4
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	> 300
$\min \Delta \phi(\text{jet}_{1-4}, \mathbf{p}_{\text{T}}^{\text{miss}}) \text{ [rad]}$	> 0.4
au veto	Yes
$m(h_{\text{cand1}}, h_{\text{cand2}})_{\text{avg}} \text{ [GeV]}$	\in [50, 140]
non-b leading jet	Yes
$p_{\mathrm{T}}(j_1)$ [GeV]	> 300
$ \Delta\phi(j_1,E_{\mathrm{T}}^{\mathrm{miss}}) $ [rad]	> 2.8
$m_{\rm eff}$ [TeV]	> 1

/ariable	SRC25	SRC27	SRC30	SRC32				
V _{leptons} (baseline)	= 0							
$V_{ m jets}$	≥ 4							
V_{b-jets}	≥ 3							
E ^{miss} [GeV]	> 250							
$\min \Delta \phi(\text{jet}_{1-4}, \mathbf{p}_{\text{T}}^{\text{miss}}) \text{ [rad]}$	> 0.4							
3	> 25	> 27	> 30	> 32				

Sbottom analysis

Long-lived particles

Pixel dE/dx

Table 1: Summary of the different selection requirements applied to the signal region (SR), the validation region (VR), and the control regions (CR).

	SR	VR	p-CR		dE/dx-CR	
			for SR	for VR	for SR	for VR
Track Momentum [GeV]	>150	50–150	>150	50–150	>150	50–150
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	>170		>170		<170	
Ionisation [MeV g ⁻¹ cm ²]	> 1.8		< 1.8		_	

Pixel dE/dx

