

UPPSALA UNIVERSITET

EFT interpretations of HH searches in ATLAS

Christina Dimitriadi

Supervisors: Arnaud Ferrari, Tatjana Lenz

Fysikdagarna, Lund June 15, 2022

Why look for Higgs boson pairs?

- 2012
- But still very little knowledge about the Higgs potential

$$V(H) = \frac{1}{2}m_H H^2 + \lambda v H^3 + \frac{1}{4}\lambda H^4 + \dots$$

• Great progress in our understanding of the Higgs boson since its discovery in

Why look for Higgs boson pairs?

- 2012
- But still very little knowledge about the Higgs potential

$$V(H) = \frac{1}{2}m_{H}H^{2} + \lambda vH^{3} + \frac{1}{4}\lambda H^{4} + \dots$$

Mass term: minimum of the potential

Christina Dimitriadi

Partikeldagarna, Lund 2022

• Great progress in our understanding of the Higgs boson since its discovery in

Why look for Higgs boson pairs?

- Great progress in our understanding of the Higgs boson since its discovery in 2012
- But still very little knowledge about the Higgs potential

$$V(H) = \frac{1}{2}m_{H}H^{2} + \lambda vH^{3} + \frac{1}{4}\lambda H^{4} - \frac{1}{4}\lambda H^{4} -$$

Directly measure λ_{HHH} via HH production

- SM HH rate very small, but many models predict increases to the cross-section
- Probe some of the Higgs EFT operators

- $+\ldots$

HH production at the LHC

Gluon-gluon fusion $\sigma_{ggF}(pp \rightarrow HH) = 31.05 \, \text{fb}$

Vector-boson fusion $\sigma_{VBF}(pp \rightarrow HH) = 1.73 \, \text{fb}$

Christina Dimitriadi

HH decay modes

	bb	ww	ττ	ZZ	YY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

HH→bbtt

- Moderate branching ratio
- Relatively clean final state

Christina Dimitriadi

ATLAS-CONF-2021-030

HH→bbtt analysis overview

- 3 signal regions: $\tau_{had}\tau_{had}$, $\tau_{lep}\tau_{had}$ (SLT), $\tau_{lep}\tau_{had}$ (LTT)
 - $bb\tau_{had}\tau_{had}$: exactly two τ_{had} , lepton-veto
 - $bb\tau_{lep}\tau_{had}$: exactly one τ_{had} and an e or μ

Christina Dimitriadi

- In both channels:
 - exactly two *b*-jets are required
 - $m_{\tau\tau}^{MMC}$ > 60 GeV
 - trigger-dependent thresholds on e, μ, τ_{had} and jets

Semi-leptonic: Neural Networks

HH→bbtt analysis overview

- MVAs trained on SM signal vs. all backgrounds using high-level variables like: lacksquare $m_{\rm HH}, m_{bb}, m_{\tau\tau}^{\rm MMC}, \Delta R(b, b), \Delta R(\tau, \tau),$ etc.
- \bullet Z + HF CR

Binned profile likelihood fit on the MVA classifiers in all three SRs together with the m_{II} in

Semi-leptonic: Neural Networks

HH decay modes

	bb	ww	ττ	ZZ	YY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

HH→bbyy

- Tiny branching fraction
- Very clean final state
- Excellent di-photon mass resolution

HH-bbyy analysis overview

- Event selection: at least 2 photons
 - exactly 2 b-tagged jets
- Split events into low- and high-m_{HH} regions to target different signal hypotheses
- Separate BDTs trained in low- and high-mass regions
- Loose and Tight signal regions for each mass region \rightarrow 4 SRs in total
- Simultaneous unbinned maximum likelihood fit to the $m_{\gamma\gamma}$ distributions in each SR

$HH \rightarrow bbyy$ analysis overview

- Event selection: at least 2 photons
 - exactly 2 b-tagged jets
- Split events into low- and high-mнн regions to target different signal hypotheses
- Separate BDTs trained in low- and high-mass regions
- Loose and Tight signal regions for each mass region \rightarrow 4 SRs in total
- Simultaneous unbinned maximum likelihood fit to the $m_{\gamma\gamma}$ distributions in each SR

Partikeldagarna, Lund 2022

BDT Score

HH→bbtt + bbyy results (139 fb⁻¹)

ATLAS-CONF-2021-052

Higgs Effective Field Theory (HEFT)

- Treating Higgs field as EW singlet
- Five independent effective coupling coefficients $\mathscr{L}_{\mathsf{HEFT}} \supset -m_t \left(\frac{h}{c_{tth}} \frac{h}{v} + \frac{h^2}{v^2} \right) \overline{t}t - \frac{h}{c_{hhh}} \frac{m_h^2}{2v} h^3 + \frac{\alpha_s}{8\pi} \left(c_{ggh} \frac{h}{v} + \frac{h^2}{v^2} \right) G_{\mu\nu}^a G^{a, \mu\nu}$

Christina Dimitriadi

Variations of the EFT coefficients change their relative contributions and modify m_{HH} spectrum

HEFT shape benchmarks

- Seven benchmarks with representative m_{HH} shape features
- Cluster analysis to group the shapes of m_{HH} predicted by HEFT JHEP03(2020)091

Benchmark	C _{hhh}	C _{tth}	C _{tthh}	c _{ggh}	C _{gghh}
SM	1	1	0	0	0
1	3.94	0.94	-1/3	0.5	1/3
2	6.84	0.61	1/3	0.0	-1/3
3	2.21	1.05	-1/3	0.5	0.5
4	2.79	0.61	1/3	-0.5	1/6
5	3.95	1.17	-1/3	1/6	-0.5
6	5.68	0.83	1/3	-0.5	1/3
7	-0.10	0.94	1	1/6	-1/6

HEFT reweighting

- Generating Monte Carlo (MC) samples is computationally expensive
- Scans in HEFT space with dedicated MC samples not practical
- Reweight SM sample by differential A_i coefficients

$$\begin{split} \sigma^{\rm NLO} / \sigma^{\rm NLO}_{SM} &= A_1 \, c_t^4 + A_2 \, c_{tt}^2 + A_3 \, c_t^2 c_{hhh}^2 + A_4 \, c_{ggh}^2 c_{hhh}^2 + A_5 \, c_{gghh}^2 + A_6 \, c_{tt} c_t^2 + A_7 \, c_t^3 c_{hhh} \\ &+ A_8 \, c_{tt} c_t \, c_{hhh} + A_9 \, c_{tt} c_{ggh} c_{hhh} + A_{10} \, c_{tt} c_{gghh} + A_{11} \, c_t^2 c_{ggh} c_{hhh} + A_{12} \, c_t^2 c_{gghh} \\ &+ A_{13} \, c_t c_{hhh}^2 c_{ggh} + A_{14} \, c_t c_{hhh} c_{gghh} + A_{15} \, c_{ggh} c_{hhh} c_{gghh} \\ &+ A_{16} \, c_t^3 c_{ggh} + A_{17} \, c_t c_{tt} c_{ggh} + A_{18} \, c_t c_{ggh}^2 c_{hhh} + A_{19} \, c_t c_{ggh} c_{gghh} \\ &+ A_{20} \, c_t^2 c_{ggh}^2 + A_{21} \, c_{tt} c_{ggh}^2 + A_{22} \, c_{ggh}^3 c_{hhh} + A_{23} \, c_{ggh}^2 c_{gghh} \, . \end{split}$$

Christina Dimitriadi

HEFT reweighting

- Generating Monte Carlo (MC) samples is computationally expensive
- Scans in HEFT space with dedicated MC samples not practical
- Reweight SM sample by differential A_i coefficients

Christina Dimitriadi

Reweighting validation plots LHCHWG EFT Public Note 🗾

HEFT parameter scans

- Focus on c_{gghh} and c_{tthh} : HH process gives unique access to these 4-point interactions

• In addition to benchmarks, weights also allow for scans of individual Wilson coefficients

HEFT interpretations: results (combined)

L. Pereira Sanchez (SU), S. Ördek (UU), C. Dimitriadi

- Less sensitive to low- m_{HH} BMs 1 and 2
- Highest sensitivity to BM 7 due to increased m_{HH}
- Lower individual limits for positive c_{gghh}/c_{tthh} due to increased m_{HH}

Christina Dimitriadi

ATL-PHYS-PUB-2022-019

Summary

- EFT interpretations becoming increasingly popular in HH searches
- HEFT interpretation of $bb\tau\tau$, $bb\gamma\gamma$ and their combination ATL-PHYS-PUB-2022-019
- Upper limits are set for 7 benchmark models and on c_{gghh} and c_{tthh} Wilson coefficients
- Ongoing collaboration with theorists (EFT public note in preparation)
 - Summary of available EFT tools for HH
 - Recommendations for the various EFT parametrisations for HH

Thank you for your attention!

Varied Higgs self-coupling

bbtautau event selection

 $p_{\rm T} > 45 \ (20) \ {\rm GeV}$

 $\tau_{had}\tau_{had}$ category STT DTT

 e/μ s

No loose e/μ with $p_{\rm T} > 7$ GeV

 $au_{ ext{had-vis}}$

Two loose $\tau_{had-vis}$ $|\eta| < 2.5$ $p_{\rm T} > 100, 140, 180 (25) \,{\rm GeV}$ $p_{\rm T} > 40 \ (30) \ {\rm GeV}$

Jet se

 ≥ 2 jets with Trigger dependent

Event-lev

Trigger requir Collision verte $m_{\tau\tau}^{\rm MMC}$ Opposite-sign electric charge Exactly two

$\tau_{\text{lep}}\tau_{\text{had}}$ categories						
SLT	LTT					
election						
Exactly one tight	nt <i>e</i> or medium μ					
$p_{\rm T}^e > 25, 27 {\rm ~GeV}$	$18 \text{ GeV} < p_T^e < \text{SLT cut}$					
$p_{\rm T}^{\mu} > 21,27 {\rm ~GeV}$	$15 \text{ GeV} < p_{T}^{\mu} < \text{SLT cut}$					
$ \eta^e < 2.47$, not 1	$.37 < \eta^e < 1.52$					
$ \eta^{\mu} $	< 2.7					
selection						
One loose $\tau_{had-vis}$						
n < 2.3						
$p_{\rm T} > 20 { m GeV}$	$p_{\rm T} > 30 { m ~GeV}$					
election						
$ \eta < 2.5$						
$p_{\rm T} > 45 \ (20) \ {\rm GeV}$	Trigger dependent					
vel selection						
irements passed						
ex reconstructed						
> 60 GeV						
ges of $e/\mu/\tau_{had-vis}$ and $\tau_{had-vis}$						
b-tagged jets						
$m_{bb} < 1$	150 GeV					

bbtautau uncertainty breakdown

Table 4: Breakdown of the relative contributions to the uncertainty in the extracted signal cross-sections, as determined in the likelihood fit to data. These are obtained by fixing the relevant nuisance parameters in the likelihood fit, and subtracting the obtained uncertainty on the fitted signal cross-sections in quadrature from the total uncertainty, and then dividing the result by the total uncertainty. The sum in quadrature of the individual components differs from the total uncertainty due to correlations between the groups of uncertainties.

Uncertainty source	Non-resonant HH	300 GeV	Resonant $X \rightarrow HH$ 500 GeV	1000 GeV
Data statistical	81%	75%	89%	88%
Systematic	59%	66%	46%	48%
$t\bar{t}$ and Z + HF normalisations	4%	15%	3%	3%
MC statistical	28%	44%	33%	18%
Experimental				
Jet and $E_{\rm T}^{\rm miss}$	7%	28%	5%	3%
<i>b</i> -jet tagging	3%	6%	3%	3%
$ au_{ m had-vis}$	5%	13%	3%	7%
Electrons and muons	2%	3%	2%	1%
Luminosity and pileup	3%	2%	2%	5%
Theoretical and modelling				
Fake- $\tau_{had-vis}$	9%	22%	8%	7%
Top-quark	24%	17%	15%	8%
$Z(\rightarrow \tau \tau) + HF$	9%	17%	9%	15%
Single Higgs boson	29%	2%	15%	14%
Other backgrounds	3%	2%	5%	3%
Signal	5%	15%	13%	34%

MVA postfit plots

Signal reweighting

- Investigating modified couplings only for ggF \bullet
- Weights derived by theorists to obtain BSM predictions from SM sample \bullet
- Based on dependence of cross-section on couplings

$$\begin{split} \sigma^{\rm NLO} / \sigma^{\rm NLO}_{SM} &= A_1 \, c_t^4 + A_2 \, c_{tt}^2 + A_3 \, c_t^2 c_{hhh}^2 + A_4 \, c_{ggh}^2 c_{hhh}^2 + A_5 \, c_{gghh}^2 + A_6 \, c_{tt} c_t^2 + A_7 \, c_t^3 c_{hhh} \\ &+ A_8 \, c_{tt} c_t \, c_{hhh} + A_9 \, c_{tt} c_{ggh} c_{hhh} + A_{10} \, c_{tt} c_{gghh} + A_{11} \, c_t^2 c_{ggh} c_{hhh} + A_{12} \, c_t^2 c_{gghh} \\ &+ A_{13} \, c_t c_{hhh}^2 c_{ggh} + A_{14} \, c_t c_{hhh} c_{gghh} + A_{15} \, c_{ggh} c_{hhh} c_{gghh} \\ &+ A_{16} \, c_t^3 c_{ggh} + A_{17} \, c_t c_{tt} c_{ggh} + A_{18} \, c_t c_{ggh}^2 c_{hhh} + A_{19} \, c_t c_{ggh} c_{gghh} \\ &+ A_{20} \, c_t^2 c_{ggh}^2 + A_{21} \, c_{tt} c_{ggh}^2 + A_{22} \, c_{ggh}^3 c_{hhh} + A_{23} \, c_{ggh}^2 c_{gghh} \, . \end{split}$$

- Can apply event weights $Poly(A) = \sigma^{NLO} / \sigma_{SM}^{NLO}$ to emulate BSM behaviour
- Coefficients A_i available in dependence of m_{HH} and inclusively \bullet
- Use Poly(A) to modify only cross-section, $Poly(A \mid m_{HH})$ also changes shape \bullet
- Scale SM signal with $Poly(A \mid m_{HH})/Poly(A)$

Christina Dimitriadi

Christina Dimitriadi

ATL-PHYS-PUB-2022-021

Partikeldagarna, Lund 2022

Acceptance \times Efficiency [%]	HM Loose	LM Loose	HM Tight	LM Tight	Total
SM	3.2	0.6	7.7	0.4	11.9
BM 1	1.3	2.9	3.8	1.5	9.5
BM 2	1.8	2.2	4.5	1.2	9.7
BM 3	2.2	1.3	8.3	0.6	12.4
BM 4	2.9	0.7	8.6	0.4	12.6
BM 5	3.1	0.3	9.8	0.1	13.3
BM 6	2.6	1.2	7.0	0.7	11.5
BM 7	3.1	0.3	10.8	0.2	14.4

Acceptance \times Efficiency [%]	$ b\bar{b}\tau_{\rm lep}\tau_{\rm had} ({\rm SLT})$	$b\bar{b}\tau_{\rm lep}\tau_{\rm had}~({\rm LTT})$	$b\overline{b} au_{ m had} au_{ m had}$	Total
SM	4.1	1.0	4.1	9.2
BM 1	3.2	0.7	2.7	6.6
BM 2	3.3	0.8	2.9	7.0
BM 3	4.7	0.9	4.9	10.5
BM 4	4.6	1.0	4.7	10.3
BM 5	5.0	1.0	5.3	11.3
BM 6	4.0	0.9	4.0	8.9
BM 7	5.5	1.0	5.9	12.4

