### The Structure of Something Strange

Viktor Thorén Uppsala University

Fysikdagarna 2022 2022-06-15





1/14

## Why Hadrons?

#### Difficult to describe

- Spin
- Mass
- Size
- Structure  $\leftarrow$  Our focus





## Hyperons: What are they and why study them?

- Baryons with strangeness  $\geq 1$
- Complementary to nucleons, relatively unexplored



| Hyperon      | Mass $[GeV/c^2]$ | Decay (BF)                |
|--------------|------------------|---------------------------|
| Λ            | 1.116            | $p\pi^{-}$ (63.9%)        |
|              |                  | $n\pi^0$ (35.8%)          |
| $\Sigma^{-}$ | 1.197            | $n\pi^{-}$ (99.8%)        |
| $\Sigma^+$   | 1.189            | $p\pi^0$ (51.6%)          |
|              |                  | $n\pi^+$ (48.3%)          |
| $\Xi^0$      | 1.315            | $\Lambda \pi^{0}$ (99.5%) |
| Ξ-           | 1.321            | $\Lambda \pi^{-}$ (99.8%) |
| Ω            | 1.672            | $\Lambda K^{-}$ (67.8%)   |
|              |                  | $\Xi^0 \pi^-$ (23.6%)     |
|              |                  | $\Xi^{-}\pi^{0}$ (8.6%)   |

 $+\,\Omega^-(sss)$  Spin 3/2

- $\Lambda$  Hyperon:
  - Two dominating decay modes:  $\Lambda \to p\pi$  (63.9%) and  $\to n\pi^0$  (35.8%)
  - $\bullet$  Decays weakly  $\rightarrow$  long-lived. Travels measurable distance before decaying.

# $e^+e^- \rightarrow \text{Hyperons}$



Two possible approaches for studying energy-dependent phenomena:

- Initial state radiation (ISR)
- Energy scan  $\leftarrow$  **Chosen here**

# Beijing Electron-Positron Collider (BEPCII)



# Beijing Spectrometer (BESIII)

- Near  $4\pi$  coverage
- Helium-gas drift chamber
- CsI(Tl) crystal calorimeter

- Plastic scintillator TOF-system
- 1 T super-conducting solenoid
- RPC-based muon chamber



#### Strange Structure

### **Electromagnetic Form Factors**

- Depends on complex internal structure
- Form factors quantify deviation from pointlike nature
- $\bullet\,$  Scalar functions of momentum transfer  $q^2$
- Elastic/transition  $(h_1 = h_2/h_1 \neq h_2)$
- Spacelike/Timelike  $(q^2 < 0/q^2 > 0)$



### Electromagnetic Form Factors of Hyperons

Spin 1/2: Two independent form factors  $G_E$ ,  $G_M$ 

**SL FFs**  $(q^2 < 0)$ 

- Can be studied in elastic lepton scattering
   Hyperons are unstable
   → Difficult!
- Real-valued functions of  $q^2$ .

- **TL FFs**  $(q^2 > 0)$ 
  - Can be studied in lepton-antilepton annihilation **Hyperon FFs experimentally** accessible!
  - Complex functions of  $q^2$ :  $G_M(q^2) = |G_M(q^2)|e^{i\Phi_M}$  $G_E(q^2) = |G_E(q^2)|e^{i\Phi_E}$
  - Observables  $R = |G_E/G_M|$ ,  $\Delta \Phi = \Phi_E - \Phi_M$



### Phase Measurement

#### What is the significance of $\Delta \Phi$ ?

- SL and TL FFs related by dispersion relations.
  - As  $|q^2| \to \infty$ : SL  $\to$  TL  $\implies \Delta \Phi = n \cdot \pi$
  - Oscillations of  $\Delta\Phi$  reveal zero-crossings Phys. Rev. D 104, 116016 (2021)
- Provides constraints for unmeasurable SL FFs

#### How to measure it?

- If  $\sin \Delta \Phi \neq 0 \ B/\bar{B}$  can be polarized
- Experimental access to polarization in self-analyzing weak decays of hyperons!
- Utilized by BESIII to measure the  $\Lambda$  FFs  $_{\rm Phys. \ Rev. \ Lett. \ 123 \ (2019) \ 12, \ 122003}$



Next step: What is the  $q^2$  dependence of  $\Delta \Phi$ ? We look at  $e^+e^- \to \Lambda \overline{\Lambda}, \Lambda / \overline{\Lambda} \to p\pi$ 

# Formalism for the Process $e^+e^- \to \Lambda \bar{\Lambda} \to p\pi^- \bar{p}\pi^+$

Full reaction described by:  $\xi = (\theta, \theta_1, \phi_1, \theta_2, \phi_2) = (\theta, \Omega_1, \Omega_2)$ Fäldt, Kupsc, Phys.Lett.B 772 (2017) 16-20



- $\mathcal{F}_i$  are known functions of the angles
- R can be extracted as  $R = \sqrt{\tau} \sqrt{\frac{1-\eta}{1+\eta}}, \ \tau = \frac{q^2}{4m_{\Lambda}^2}$

•  $\alpha_{\Lambda}$ :  $\Lambda$  decay asymmetry parameter  $\leftarrow$  **CP-tests** e.g. BESIII, Nature 606, 64–69 (2022) When only  $\Lambda/\bar{\Lambda}$  is measured two angles  $\xi = (\theta, \theta_p)$  are sufficient.

$$\mathcal{W}_{\Lambda/\bar{\Lambda}}(\xi) = 1 + \eta \cos^2 \theta + \frac{\alpha_{\Lambda/\bar{\Lambda}} \sqrt{1 - \eta^2} \sin(\Delta \Phi) \sin \theta \cos \theta \cos \theta_p}{\text{Polarization}}$$

# Analysis Strategy

Two possible ways of selecting  $e^+e^- \to \Lambda \bar{\Lambda}$  events:

- Double-Tag: Reconstruct both  $\Lambda$  and  $\bar{\Lambda}$
- Single-Tag: Reconstruct either  $\Lambda$  or  $\bar{\Lambda}$



Three statistically independent samples at each energy. Combine to determine:

- $\sigma_{Born}$  as inverse-variance weighted mean
- $R, \Delta \Phi$  through simultaneous fit

Data at 2.396 GeV used to illustrate event selection procedure

### Determination of the Born Cross Section

To determine  $\sigma_{Born}$ , correct for

- Initial state radiation (ISR)
- Vacuum polarization (VP)



$$\sigma_{obs.} = \frac{N}{\mathcal{LB}(\Lambda \to p\pi^{-}) \left[\epsilon_1 \mathcal{B}(\Lambda \to p\pi^{-}) + \epsilon_2 \mathcal{B}(\Lambda \to n\pi^{0})\right]}$$
$$\sigma_{Born} = \frac{\sigma_{obs.}}{(1+\delta)_{ISR+VP}}$$

Need energy dependence of Born cross section to estimate correction factor. **Dipole approximation:** 

$$\sigma_{Born}(q^2) = \frac{1}{q^2} \frac{c_0 \cdot \beta}{(q^2 - c_1^2)^4},$$

 $c_1=1.77\pm0.01~{\rm GeV}$  indicates mix of  $\phi(1680)$  and  $\phi(2170)$  in line with chin. Phys. Lett. 39 011201



#### Form Factor Measurement

Parameters R,  $\Delta\Phi$  determined by unbinned MLL fit.  $\Lambda$  decay asymmetry parameter fixed  $\alpha_{\Lambda} = 0.754$  (BESIII, Nature Phys. 15 (2019) 631)

$$-\ln \mathcal{L} = -\sum_{i=1}^{N} \ln \frac{\mathcal{W}(\xi_i; \eta, \Delta \Phi)}{\mathcal{N}(\eta, \Delta \Phi)} - \sum_{i=1}^{N} \ln \epsilon(\xi_i), \qquad \qquad \mathcal{N}(\eta, \Delta \Phi) = \int \mathcal{W}(\xi; \eta, \Delta \Phi) \epsilon(\xi) d\xi \\ -\ln \mathcal{L}_{tot.} = -\ln \mathcal{L}_{\Lambda\bar{\Lambda}} - \ln \mathcal{L}_{\bar{\Lambda}} - \ln \mathcal{L}_{\Lambda}$$





Note that  $\Delta \Phi$  moves from first to second quadrant between 2.396 and 2.64 GeV!

# Summary & Outlook

#### What has been done:

- Combination of full and partial reconstruction
- $R,\,\Delta\Phi,\,\sigma_{Born}$  measured at five energies from 2.3864 GeV to 3.08 GeV
  - First measurement of energy dependence of  $\Delta \Phi$

#### To be done:

- $\bullet\,$  Study unexpected behavior of  $\Delta\Phi$ 
  - Related to method/size of data samples?
  - If true, due to resonance, rescattering?
- Interpretation of result in terms of Λ charge radius Phys. Rev. D 104, 116016
- Cross section measurement at additional data points.