Pulsars do not Produce Sharp Features in the Cosmic-Ray Electron and **Positron Spectra** I. John & T. Linden, arXiv:2206.04699

Isabelle John Fysikdagarna Lund 17th June 2022

centre

Local Cosmic-Ray Positron Flux

- Measured up to 1 TeV
- Rises above 20 GeV
- Spectrum is very smooth

Components of the Positron Flux

Fysikdagarna Lund 2022

Pulsars $\checkmark e^+$ et e

- Rapidly rotating neutron stars
- Convert spin-down power to electron-positron pairs
- Dominant contribution to the local CR positron flux from ~50 GeV to TeV energies •

Positron Spectrum of Individual Pulsars

Template system: Geminga

- Middle-aged (~370 000 years)
- Nearby (~250 pc)

Fysikdagarna Lund 2022

Isabelle John

Recent Pulsar Papers Predict Sharp Features

Hooper et al., arXiv:1702.08436

Orusa et al., arXiv:2107.06300

Fysikdagarna Lund 2022

Huang et al., arXiv:1712.00005

10³

E [GeV]

Sharp Spectral Features?

- AMS positron flux is very smooth
- Annihilating dark matter could produce sharp spectral features as well

total positron flux, pulsars Positron flux seconda positrons dark matte Energy

Spectral Features From Pulsars

- 2. High-energy positrons lose energy faster than low-energy positrons:
- To synchrotron radiation in magnetic fields
- To inverse-Compton scattering on ISRF photons

Fysikdagarna Lund 2022

1. Large fraction of positrons are produced when pulsar is very young

3. These initial positrons build up sharp feature in positron spectrum over time

Cooling Mechanisms

As positrons propagate through the Galaxy, they cool:

- Energy losses to synchrotron radiation in magnetic fields
- Energy losses to inverse-Compton scattering on ambient photons (Interstellar Radiation Field)
- Energy loss rate:

$$\frac{dE}{dt} = -\frac{4}{3}\sigma_T \left(\frac{E}{m_e}\right)^2 \left[\rho_B + \sum_i \rho_i(\nu_i)S(\mu_i)\right]$$

- Analytic approximations treat ICS as a continuous process •
- But ICS is a stochastic process with catastrophic energy losses •
 - Each positron only interacts with small number of photons
 - Energy transfer in each interaction differs greatly

Fysikdagarna Lund 2022

Inverse Compton Scattering

Interstellar Radiation Field:

- CMB photons
- IR radiation
- Starlight
- UV radiation

E Electron energy

- \mathcal{V}_i Photon energy
- σ_T Thomson cross section
- ρ_B Magnetic field energy density
- ρ_i ISRF energy densities
- S Klein-Nishina suppression

Stochastic Inverse-Compton Scattering Model

- Create positron with some initial energy 1.
- **Evolve in time steps** 2.
 - Calculate synchrotron energy losses
 - Based on positron and photon energy, determine if ICS happens and at what photon energy •
 - If ICS: Calculate energy loss and new electron energy
- Repeat until current pulsar age is reached 3.

Stochasticity of Inverse-Compton Scattering

• Analytic calculation:

• All positrons are treated the same way, cool down to exactly the same energy

Stochastic ICS: •

- ICS interactions are rare (~120 interactions in 370 kyr)
- Catastrophic energy losses (~10-100% of energy lost)
- ~30% spread in final positron energy distribution

Fysikdagarna Lund 2022

Isabelle John

Stochasticity of Inverse-Compton Scattering

• Analytic calculation:

 All positrons are treated the same way, cool down to exactly the same energy

• Stochastic ICS:

- ICS interactions are rare (~120 interactions in 370 kyr)
- Catastrophic energy losses (~10-100% of energy lost)
- ~30% spread in final positron energy distribution

Fysikdagarna Lund 2022

a 370 kyr) ergy lost) Ition

Pulsar Positron Spectrum

correctly treating inverse-Compton scattering stochastically

Fysikdagarna Lund 2022

Sharp spectral features introduced by analytic approximation are smoothened out by ~50% when

Implications for Pulsar Models

- Pulsars do not produce sharp features
- Loosens constraints on pulsars •
- Recent papers that fit pulsars to the positron data require large number of pulsars to wash out sharp features: Possibly only smaller number of pulsars needed to fit AMS-02 positron flux

Orusa et al., arXiv:2107.06300

Fysikdagarna Lund 2022

Cholis & Krommydas, arXiv:2111.05864

Isabelle John

Implications for Dark Matter

- dark matter mass

Fysikdagarna Lund 2022

• Dark matter particles annihilating into leptonic final states produce sharp spectral features at

• Dark matter is the only known astrophysical mechanism that produces sharp spectral features

We have proven that pulsars cannot produce sharp spectral feature when inverse-Compton scattering is treated correctly stochastically.

Next projects:

- Integrate stochastic ICS into full diffusion models
- Investigate other mechanisms that smoothen out the spectral feature further, e.g. variations in the Interstellar Radiation Field

Fysikdagarna Lund 2022

Summary and Outlook

• Provide simple way of integrating stochastic ICS effects into large-scale pulsar models

Supplementary Slides

Stochastic Inverse-Compton Scattering

Stochastic Inverse-Compton

Fysikdagarna Lund 2022

Analytic Approximation
Average of Stochastic ICS
Stochastic ICS ±1*o* Stochastic ICS ±2*o*

Spectral Feature is Independent of Diffusion

