

Fysikdagarna 2022

NORA VALTONEN-MATTILA¹, ERIN O'SULLIVAN² DETECTION HORIZON OF NEUTRINOS FROM CORE-COLLAPSE SUPERNOVAE USING HIGH ENERGY NEUTRINOS

1: nora.valtonen@physics.uu.se 2: <u>erin.osullivan@physics.uu.se</u>

arXiv: https://arxiv.org/abs/2206.00450

SUPERNOVAE

End of star's lifecycle

Nucleosynthesis of heavy elements

> Gives birth to neutron stars and black holes!

99% of kinetic energy!

Some supernovae can also produce highenergy neutrinos

WHY NEUTRINOS?

O(10)M eV

Post-exp

Explosion driven mechanism. **99% of** E_{kin} released as MeV ν

Probing with neutrinos will give us insight on the explosion mechanism

In case of a black-hole formation, no EM emission will be emitted, but neutrinos can escape

Ref: IceCube collaboration. M.G. Aartsen et al. (2011) A&A, 535, 18.

Extending the horizon using he ν

CSM-EJECTA MODEL

Neutron star

HE ν FLUX MODELS

CSM-EJECTA MODEL

Ref: K. Murase (2018) PhRvD, 97

Neutrino fluence for all flavor ν at $d = 10 \, kpc$ and $t_{max} = 10^7 \, s$

CHOKED-JETS MODEL

Ref: R. Enberg, M. Hall Reno & I. Sarcevic (2009) PhRvD, 79

HE FLUX MODELS

O(10) MeV

~Post-explosion

- 1. HOW FAR CAN WE EXTEND |CECUBE'S **NEUTRINOS**
- CCSNE

Neutrino fluence for all flavor ν at $d = 10 \, kpc$ and $t_{max} = 10^7 \, s$

TeV

Around or post-explosion

• High-flux of high-energy

> D[±]

 10^{8}

KEY QUESTIONS:

DETECTION HORIZON OF CCSNE USING HE

2. ARE THERE ANY INTERESTING GALAXIES OUT THERE THAT COULD POTENTIALLY HOST THESE

10⁴

Neutrino flux for ν_{μ} and $\bar{\nu_{\mu}}$ at d = 20 Mpc

10⁵

10⁶

 E_v (GeV)

107

10-5

NUMBER OF OBSERVABLE NEUTRINOS

Best sensitivity for northern sky

10 YEAR DATA SAMPLE

Tracks

Best sensitivity for southern sky

2 YEAR CONTAINED EVENTS SAMPLE

Mostly cascades

NUMBER OF OBSERVABLE NEUTRINOS

Effective area: neutrino detection sensitivity. It is as a function of neutrino direction (declination) and energy.

WHY DO WE HAVE BETTER SENSITIVITY WITH THESE SAMPLES?

Gives the mean number of neutrino that IceCube would observe

distance for each model

Observation time

Best sensitivity for northern sky

10 YEAR DATA SAMPLE

Tracks

Best sensitivity for southern sky

2 YEAR CONTAINED SAMPLE

Mostly cascades

ICECUBE SENSITIVITY

Northern sky —> Earth provides a filter for the atmospheric muons

Southern sky (coming from above the detector) Earth does not filter. One way to filter is through contained events.

DETECTION HORIZON FOR CSM-EJECTA MODEL

SUPERNOVAE FRACTIONS: CSM-EJECTA

Figure 9. The observed fractions of the subclasses of SNe in a volume-limited sample, illustrated as pie charts. The fractions of SNe Ic and IIb are upper limits, while that of SN 1991T-like objects is a lower limit. Also, the subclass of SNe Ibc-pec consists of broad-lined SNe Ic, peculiar objects, and the "Ca-rich" objects (see text for more details).

Reference: <u>https://arxiv.org/abs/1006.4612v2</u>

Interaction powered SN (CSM-EJECTA)

SUPERNOVAE FRACTIONS: CSM-EJECTA

Figure 9. The observed fractions of the subclasses of SNe in a volume-limited sample, illustrated as pie charts. The fractions of SNe Ic and IIb are upper limits, while that of SN 1991T-like objects is a lower limit. Also, the subclass of SNe Ibc-pec consists of broad-lined SNe Ic, peculiar objects, and the "Ca-rich" objects (see text for more details).

Reference: <u>https://arxiv.org/abs/1006.4612v2</u>

Interaction powered SN (CSM-EJECTA)

DETECTION HORIZON (CSM-EJECTA MODEL)

NORTHERN SKY

Ref model 1:https://arxiv.org/abs/1705.04750v2

DETECTION HORIZON (CSM-EJECTA MODEL)

Ref model 1:<u>https://arxiv.org/abs/1705.04750v2</u>

DETECTION HORIZON (CSM-EJECTA MODEL)

NORTHERN SKY

Ref model:<u>https://arxiv.org/abs/1705.04750v2</u>

SOUTHERN SKY

TOP 20 GALAXIES (CSM-EJECTA)

Considering background, we can reach these galaxies

Galaxy Name (1)NGC 5236 NGC 3034 NGC 253 NGC 5128 NGC 3031 Maffei 2 UGC 2847 NGC 4945 NGC 2403 NGC 4449 NGC 1313 M 31 NGC 7793 NGC 55NGC 598 NGC 4736 NGC 1569 LMC NGC 4236 NGC 247

RA	Dec	Distance	CCSN Rate	$N_{\nu}[\text{II-P}]$	$N_{\nu}[\text{IIn}]$	N_{ν} [Choked jets]
(Deg)	(Deg)	(Mpc)	(yr^{-1})	Number	Number	Number
(2)	(3)	(4)	(5)	(6)	(7)	(8)
204.25	-29.87	4.47	0.0240	0.0003	0.028	17
148.97	69.68	3.53	0.0120	0.0069	0.86	575
11.89	-25.29	3.94	0.0120	0.0004	0.0353	25
201.37	-43.02	3.66	0.0092	0.0005	0.041	29
148.89	69.07	3.63	0.0079	0.0065	0.82	544
40.48	59.60	3.30	0.0078	0.008	1	658
56.70	68.09	3.03	0.0065	0.009	1.17	780
196.37	-49.47	3.60	0.0064	0.0005	0.042	30
114.21	65.60	3.22	0.0063	0.008	1.04	691
187.05	44.09	4.21	0.0048	0.005	0.60	404
49.57	-66.49	4.47	0.0044	0.0004	0.032	23
10.69	41.27	0.79	0.0037	0.137	17.2	$1.15\cdot 10^4$
359.46	-32.59	3.90	0.0037	0.0004	0.036	26
3.73	-39.19	2.17	0.0034	0.0013	0.117	83
23.46	30.66	0.84	0.0032	0.12	15.3	$1.02\cdot 10^4$
192.72	41.12	4.66	0.0032	0.004	0.4955	330
67.70	64.85	1.90	0.0031	0.024	2.98	$2\cdot 10^3$
80.89	-69.76	0.05	0.0028	2.65	219.5	$2.87\cdot 10^6$
184.18	69.46	4.45	0.0021	0.004	0.543	362
11.79	-20.76	3.65	0.0020	0.0005	0.041	29

Table 1. Top 20 galaxies

NOTE—This table shows the top 20 galaxies that comprise 87% of all the CCSN rate within 5 Mpc from Nakamura et al. (2016)

DETECTION HORIZON FOR CHOKED-JETS MODEL

Figure 9. The observed fractions of the subclasses of SNe in a volume-limited ample, illustrated as pie charts. The fractions of SNe Ic and IIb are upper limits, while that of SN 1991T-like objects is a lower limit. Also, the subclass of SNe Ibc-pec consists of broad-lined SNe Ic, peculiar objects, and the "Ca-rich" objects (see text for more details)

Choked jets

Reference: <u>https://arxiv.org/abs/1006.4612v2</u>

SUPERNOVAE FRACTIONS: CHOKED-JETS

Choked jets

Reference: <u>https://arxiv.org/abs/1006.4612v2</u>

HOW FAR COULD WE OBSERVE (CHOKED-JETS)

NORTHERN SKY

Ref model 2: <u>https://arxiv.org/abs/0808.2807v2</u>

Ref model 2: <u>https://arxiv.org/abs/0808.2807v2</u>

Ref model 2: <u>https://arxiv.org/abs/0808.2807v2</u>

SOUTHERN SKY

Observed CCSNe (choked-jet type) = cumulative optically observed [yearly] (ZTF and ZTF+ASAS-SN)

- **Expected in** ν = Scaling. Expected to be observable by IC with suppression factor [yearly]
- Suppression factor arises from the fact that from the population, only \sim 10% have jets, and from those only a few point to Earth!

Distance [Mpc]

80

HOW FAR COULD WE OBSERVE (CHOKED-JETS)

NORTHERN SKY

Ref model 2: <u>https://arxiv.org/abs/0808.2807v2</u>

SOUTHERN SKY

TOP 20 GALAXIES (CHOKED-JETS)

We can reach all of the top 20 galaxies

Galaxy Name (1)NGC 5236 NGC 3034 NGC 253 NGC 5128 NGC 3031 Maffei 2 UGC 2847 NGC 4945 NGC 2403 NGC 4449 NGC 1313 M 31 NGC 7793 NGC 55NGC 598 NGC 4736 NGC 1569 LMC NGC 4236 NGC 247

$\mathbf{R}\mathbf{A}$	Dec	Distance	CCSN Rate	$N_{\nu}[\text{II-P}]$	$N_{\nu}[\text{IIn}]$	N_{ν} [Choked jets]		
(Deg)	(Deg)	(Mpc)	$(yr^{-}1)$	Number	Number		Number	
(2)	(3)	(4)	(5)	(6)	(7)		(8)	
204.25	-29.87	4.47	0.0240	0.0003	0.028		17	
148.97	69.68	3.53	0.0120	0.0069	0.86		575	
11.89	-25.29	3.94	0.0120	0.0004	0.0353		25	
201.37	-43.02	3.66	0.0092	0.0005	0.041		29	
148.89	69.07	3.63	0.0079	0.0065	0.82		544	
40.48	59.60	3.30	0.0078	0.008	1		658	
56.70	68.09	3.03	0.0065	0.009	1.17		780	
196.37	-49.47	3.60	0.0064	0.0005	0.042		30	
114.21	65.60	3.22	0.0063	0.008	1.04		691	
187.05	44.09	4.21	0.0048	0.005	0.60		404	
49.57	-66.49	4.47	0.0044	0.0004	0.032		23	
10.69	41.27	0.79	0.0037	0.137	17.2		$1.15\cdot 10^4$	
359.46	-32.59	3.90	0.0037	0.0004	0.036		26	
3.73	-39.19	2.17	0.0034	0.0013	0.117		83	
23.46	30.66	0.84	0.0032	0.12	15.3		$1.02\cdot 10^4$	
192.72	41.12	4.66	0.0032	0.004	0.4955		330	
67.70	64.85	1.90	0.0031	0.024	2.98		$2\cdot 10^3$	
80.89	-69.76	0.05	0.0028	2.65	219.5		$2.87\cdot 10^6$	
184.18	69.46	4.45	0.0021	0.004	0.543		362	
11.79	-20.76	3.65	0.0020	0.0005	0.041		29	

Table 1. Top 20 galaxies

NOTE—This table shows the top 20 galaxies that comprise 87% of all the CCSN rate within 5 Mpc from Nakamura et al. (2016)

CONCLUSIONS

- CSM-interaction model:
 - Models considered in this study consist of 59% of all CCSNe.
 - to 0.3 (3.3) Mpc. For type IIn, we could observe M31 (17 ν) and NGC 598 (15 ν).
 - singlet to 0.08 (0.74) Mpc. We could observe 220 ν from the LMC with type IIn.
- Choked jets model:
 - We can reach all of the top 20 galaxies nearby with high statistics.
 - such CCSNe to be observable through ν in 10 years.

• Northern sky: For type II-P (IIn), the detection horizon with a doublet is extended 0.2 (2.32) Mpc, and for a singlet up

• Southern sky: We can reach past the LMC with both II-P and IIn, with a doublet reach of 0.06 (0.5) Mpc and with a

• Northern sky reach: It extends to ZTF range, with a singlet detection horizon at 85 Mpc. At this distance ZTF observes 15 CCSNe yearly that would be candidates. After suppression factor (1/180 point to Earth), we expect $\frac{1}{2}$

• Southern sky reach: With a singlet we can reach 20 Mpc, however the first observed CCSNe candidate is at 30 Mpc.

NEW II-P ESTIMATES

Southern sky detection horizon will improve by a factor of 3-4

Ref: A. Kheirandish, K. Murase arxiv: <u>2204.08518</u>

IMPROVEMENT IN RECONSTRUCTION

GEN2

Expected improvement in detection horizon by a factor of 3

ICECUBE DETECTOR

https://arxiv.org/pdf/1701.03731.pdf

NEUTRINO TRANSMISSION

HOW DOES ICECUBE OBSERVE HE NEUTRINOS?

CHERENKOV LIGHT FROM SECONDARIES

There are 2 event topologies

TRACKS

- CC: $\nu_{\mu} + N > \mu + X$
- Good angular resolution (~0.5°)
- Can be difficult to estimate neutrino energy

- CC: ν_e, ν_τ
- NC: ν_e, ν_τ, ν_μ
- Good energy reconstruction
- Not the best angular resolution (~few degrees)

HOW DOES ICECUBE LOW ENERGY NEUTRINOS? OBSERVE NEUTRINOS?

Dominant: Inverse beta decay $\bar{\nu_e} + p - > n + e^+$ Very small contribution elastic scattering

Expected DOM noise rate change for a galactic SN (d~10 kpc)

LOW ENERGY NEUTRINOS

IceCube observes $\bar{\nu}_e$

Oscillations will affect the spectra that IceCube observes

Neutrinos emitted by SN~10⁵⁸ neutrinos

WHY NEUTRINOS? Production ${\cal U}$

In case of a black-hole formation, no EM emission will be emitted, but neutrinos can escape

1: H. -Th. Janka <u>https://arxiv.org/abs/1702.08713</u> 2: S. Gullin, E.P. O'Connor, J. -Sh. Wang & J. Tseng (2022) ApJ, 926, 2 3: S. Al Kharusi el at. (2021), New J. Phys., 23

TYPES OF SUPERNOVAE

- To categorize supernovae, we need both the spectra and the light curve.
- The spectra gives us the presence of elements that helps us categorise the type of supernovae, but the light curve gives us information on the subtype of supernovae.

