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Introduction

» Baryon-antibaryon asymmetry can be achieved by extensions of the Higgs sector.

» Baryogenesis via Strong First Order Electroweak Phase Transition which also generates
primordial gravitational wave, testable by space-based gravitational wave detector.
» See talk by G. Dorsch in LHCP2022!

* Most experimental efforts so far have been focused on CP-conserving models which do not
allow for this signature.

« We will focus on Higgs sector extension models which contain X (heavier), S (lighter) scalar
particles.
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» ATLAS could be sensitive to the dark shaded regions e
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« Beyond m, =250 GeV, we start to share the search space
with resonant HH search.

» We will do the search using 139 fb! data of Run-2 to
provide model-independent limit.

 This will serve as a stepping stone for Run-3.
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Data in higgs mass

Signal characteristics peakband is blinded!
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Analysis Strategy

Preselection ——»

o 2b-tagged jets @ 77% WP

/= HH

I single H

. vy

B vy

Stat. Uncertainty

. AT]\ASWork in Progress ¢ Data

Number of even

NN cut

* 2 photons 124 ' I _
* No lepton 1.0 1 | T T || |
o ;1!
central jets S [2’ 5] |11'0 |1:'20 130 140 150 760
|
Use the m sideband to

normalize diphoton background

2D fit on m, -m
vy

bb




Parameterized NN development

 We are developing PNN with m, and m_ as parameters.

» Signal efficiency and background rejection seems to be
good, for both known and unknown points.

» The PNN seems to learned to generalize the signals, but
then struggle to distinguish between them.
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Flt Strategy » We will use blnned hkehhood fit powered by pyhf. pyif
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https://pyhf.readthedocs.io/en/v0.6.3/
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Normalized entries

— > b-jet merging issue here:

 Here is the projected expected cross section
limit at 139 fb™.
 Evaluated at preselection.

 With the help of better signal/background
discrimination by NN we hope to improve
upon this.
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Summary

New X—SH search on bbyy final states is being developed.
Using 2 dimensional parameter space
2D fitting framework is used to put limit on 2D parameter space: m, -m

(P)NN for optimized selection is under-development.
Preliminary cross-section limit projected with Run-2 integrated luminosity is shown.

bb*

Stay tune for more results!
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inematics

o 1600 T T - -
c + Data
g 1400 LA,S . HH ]
“g rk in Progress == minor H
g . ggH ]
2 1200 .
£ 1000 = 2
z .ty
800 =y -
Stat. Uncertainty
600 (230, 90) GeV
—— (1000, 400) GeV
400 (1000, 70) GeV |
200 1
% 1 g t : : :
st
T 1.0
[al
08¢ 1
0.0 02 04 06 08 70
Leading photon m [Mé&¥}
@ 1600 T T T o -
[ = a
£ 4400 LAS = HH ]
g rk in Progress == minor H
g . gH ]
2 1200 .
£ 1000 - ]
4 .ty
800 = 1
Stat. Uncertainty
600 (230,90) GeV |
—— (1000, 400) GeV
400 (1000, 70) GeV |
200 1
o 0 I . t .
=12¢ 1
T10Ht
o
0.8F 1
0.0 02 0.4 0.6 08 1.0

Sub-leading photon m [Mé&¥]

a 700 T T T
5 ATLAS b Data
> 600F Work in P mm HH
5 ork in Progress == minor H
2 . ggH
2 500t - e 1
g = H
Z 400f .ty j
=
[ Stat. Uncertainty §
300 (230, 90) GeV
—— (1000, 400) GeV
200 (1000, 70) GeV
100f * 1
g 1 g ¥ 2 t
E b
=10
e '
08} 9
0 1 2 3 4 5
Leading photon pr [Md0]
«» 1200 T T T T
€ + Data
2 ATLAS -
2 4gpp} Work in Progress == minor H i
E mm ggH
2 e
£ 800 = H b
E: .ty
600 -y 1
Stat. Uncertainty
(230, 90) GeV
400 —— (1000, 400) GeV |
(1000, 70) GeV
200 1
g 0 f t
1.2¢ 3
3
T 10—+
[a}
08¢ 3
0 2 3 4 5

Sub-leading photon pr [Mé¥]

2
c
[
>
o
—
°
s
7
o
[S
=
=

Data/MC

Data/MC

50

80

~
o

Number of events
o [=2]
=] o

«»n 120 T T T T T
c 4 Data
70 B @ ATLAS o
Work in Progress E 100 Work in Progress | -
3]
5
£ 80
3
=
60
40
20
2.,
240 |
o 1.
8 I T 1 } |
08 BT [
- 2 = 0 1 2 3
Leading photon n
T T —n 120 T T T T T
4 Data = + Data
[ 2 ATLAS - HH
[ minor H ® 100} Workin Progress = minor H 1
[r—— 2 = gH
ttH
£ 80 - i
=1 L
Z tyy
60 Y 1

N
o

w
=3

#stat Uncertainty

Sub-leading photon ¢

Sub-leading photon n



high T 72 T
Vig & Vo +Zgrz-—mz2 S
——

V(h)

i /T>>Tc

[GeV]

Source: G. Dorsch in LHCP2022

Qow 1 K

= P (k,t
dlnk ~ 12H?2 272 (1)
1078
—_— Q.
10-° LISA sensitivity
10710 4
10711 5
S
é 10712 fpeak
o3
= 10-13 4
]U—HJ
10—15J
10716 r . ; |
10-5 104 103 1072 10~

f(Hz)


https://indico.cern.ch/event/1109611/

Sensitivity gap problem
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https://arxiv.org/abs/2106.10361

2D fit framework

* A fitting framework to handle fit on 2D
distributions: m,, -m, is being developed. p yif
* Fitting utilities imported from pyhf. ineo

 Full python environment and dedicated only for
binned data analysis.
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Motivation for binned data analysis:

e Correlation between m,, -m
vy bb

Preliminary limit:
 Only preselection
* Flat systematics = 25%

Study by Yosse
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B-jet merging issue

o Difficult to come up with analytical function that can handle this correlation. here
 Binned fit is able to reproduce the unbinned fit result (see backup).


https://pyhf.github.io/pyhf-tutorial/introduction.html
https://indico.cern.ch/event/1140292/contributions/4786052/attachments/2409525/4122758/SH_20220317.pdf

Relative difference to nominal. Evaluated in the peakband.

Error is statistical
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PH_EFF_ID Uncertainty__lup

PH_EFF IS0 Uncertainty__ldown
PHEFF ISO _Uncertainty__lup
PH_EFF_TRIGGER _Uncertainty__ldown
PH_EFF_TRIGGER_Uncertainty__lup
PRW_DATASF__ldown

PRW _DATASF__lup

U 1% = 0.U%
0.0% £+ 0.0%
—0.0% £ -0.0%
—0.0% + —0.0%
0.0% £+ 0.0%
0.0% = 0.0%
—0.0% + —0.0%
0.0% £ 0.0%
—0.0% + —0.0%
0.6% £ 0.0%
—0.6% = —0.0%
0.1% £+ 0.0%
—0.1% £ -0.0%
—0.2% + —0.0%
—0.0% £ -0.0%
—0.0% = —0.0%
—0.1% + —0.0%
—0.0% £ -0.0%
—0.3% + —0.0%
0.0% £+ 0.0%
—0.5% = —0.0%
—0.4% + —0.0%
0.0% £ 0.0%
—0.5% = —0.0%
—0.0% = —0.0%
—0.1% £ -0.0%
—0.1% + —0.0%
—0.1% £ —0.0%
—0.1% = —0.0%
—0.0% + —0.0%
—0.1% £ -0.0%
—0.1% = —0.0%
—0.1% = —0.0%
0.0% £ 0.0%
—0.1% + —0.0%
0.0% £ 0.0%
0.0% = 0.0%
0.3% £+ 0.0%
—0.3% £ -0.0%
—0.0% + —0.0%
0.0% £+ 0.0%
—1.6% = —0.0%
1.6% + 0.0%
—1.5% £ —0.0%
L5% £ 0.0%
—1.0% = —0.0%
L0% £ 0.0%
1L.7% +0.0%
-2.1% £+ —0.0%

—U.2% £ —U0.U%
—0.0% £ —0.0%
—0.0% £ -0.0%
—0.0% £ -0.0%
—0.0% £ —0.0%
—0.0% £ -0.0%
—0.0% £ —0.0%
—0.0% £ -0.0%
—0.0% £ —0.0%
—1.5% £ -0.0%
1.2% £ 0.0%
—0.3% £ —0.0%
0.2% £ 0.0%
0.4% + 0.0%
—0.4% £ -0.0%
—0.5% £ -0.0%
0.3% + 0.0%
—0.3% £ -0.0%
0.1% + 0.0%
—0.3% £ —0.0%
0.8% = 0.0%
0.3% + 0.0%
—0.3% £ -0.0%
0.9% + 0.0%
—0.3% £ -0.0%
0.1% £ 0.0%
—0.4% £ -0.0%
0.1% £ 0.0%
—0.4% £ -0.0%
—0.3% £ —0.0%
0.1% £ 0.0%
—0.4% £ -0.0%
—0.2% £ —0.0%
—0.4% £ -0.0%
0.2% + 0.0%
—0.0% £ -0.0%
—0.0% £ -0.0%
—0.6% £ —0.0%
0.6% £ 0.0%
—0.0% £ -0.0%
—0.1% £ —0.0%
—1.6% £ -0.0%
1.6% + 0.0%
—1.6% £ -0.0%
L.5% £ 0.0%
—1.0% £ —0.0%
0.9% £ 0.0%
1.9% + 0.0%
1.9% £ 0.0%

—U. 1% = —0.0v
—0.0% = —0.0%
0.0% £ 0.0%
0.0% = 0.0%
—0.0% = —0.0%
—0.0% = —0.0%
0.0% = 0.0%
—0.0% £ —0.0%
0.0% = 0.0%
—0.6% £ —0.0%
0.7% = 0.0%
—0.1% = —0.0%
0.1% £ 0.0%
—0.1% = —0.0%
0.0% £ 0.0%
—0.0% = —0.0%
—0.1% = —0.0%
—0.0% £ —0.0%
—0.2% = —0.0%
0.0% = 0.0%
—0.4% = —0.0%
—0.2% = —0.0%
0.0% £ 0.0%
—0.1% = —0.0%
—0.0% = —0.0%
—0.1% £ -0.0%
0.0% = 0.0%
—0.2% £ —0.0%
0.1% = 0.0%
0.0% = 0.0%
—0.1% £ -0.0%
0.1% = 0.0%
—0.0% = —0.0%
0.0% = 0.0%
—0.1% = —0.0%
—0.0% £ —0.0%
—0.0% = —0.0%
—0.3% = —0.0%
0.3% £ 0.0%
—0.0% = —0.0%
0.0% = 0.0%
—1.6% = —0.0%
1.6% = 0.0%
—1.5% £ —0.0%
L.5% £ 0.0%
—1.0% = —0.0%
L0% £ 0.0%
1.5% = 0.0%
—1.7% £ —0.0%
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