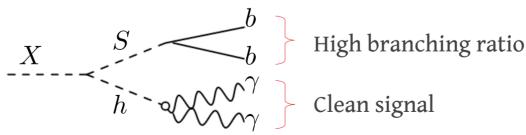
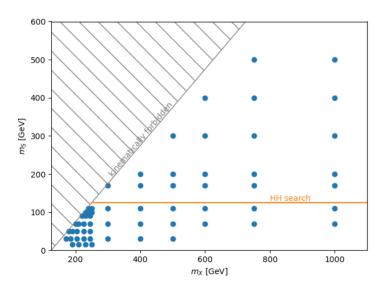
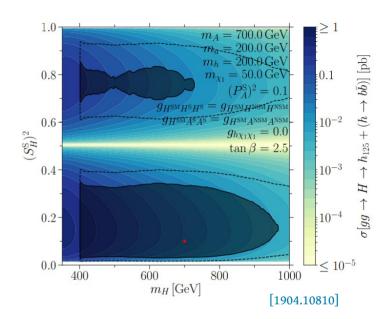
Search for Higgs-like scalar particles in the bbyy final state with the ATLAS experiment


Stefio Yosse Andrean

15 June 2022


Introduction


- Baryon-antibaryon asymmetry can be achieved by extensions of the Higgs sector.
- Baryogenesis via *Strong First Order Electroweak Phase Transition* which also generates primordial gravitational wave, testable by space-based gravitational wave detector.
 - See talk by G. Dorsch in LHCP2022!
- Most experimental efforts so far have been focused on CP-conserving models which do not allow for this signature.
- We will focus on Higgs sector extension models which contain *X* (heavier), *S* (lighter) scalar particles.

Signal parameter space

- Learning from 2HDM+S projection [1904.10810]:
 - ATLAS could be sensitive to the dark shaded regions with 300 fb⁻¹ using *bbbb* and *bbyy* final states.
 - Probably not worth it to go search beyond 1000 GeV m_x .

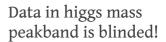
- Our signal grid:
 - mX = [170, 1000] GeV
 - mS = [15, 500] GeV
- Beyond $m_x = 250$ GeV, we start to share the search space with resonant HH search.
- We will do the search using 139 fb⁻¹ data of Run-2 to provide model-independent limit.
- This will serve as a stepping stone for Run-3.

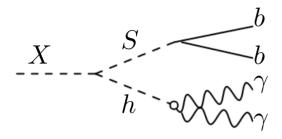
Signal parameter space $m_A = 700.0 \,\text{Ge}$ 0.8- Learning from 2HDM+S pr 0.6 -• ATLAS could be sensitive $S_H^{ m S})^2$ egions $\tan \beta = 2.5$ m. = 30 GeV $m_{e} = 90 \text{ Ge}^{1}$ with 300 fb⁻¹ using bbbb 10^{-3} Probably not worth it to 0 GeV m_v. 10^{-4} The signal is strongly ATLAS Simulation characterized by the invariant $< 10^{-5}$ 1000 masses of the final state particles [1904.10810] m. = 245 GeV $m_{bbvv} \& m_{hh}$. 500 $m_s = 30 \text{ GeV}$ $m_0 = 50 \text{ GeV}$ 0, 1000] 00 v 400 500] GeV = 250 GeV, we start to share the search space 200 ant HH search. We will do the search using 139 fb⁻¹ data of Run-2 to 100

400

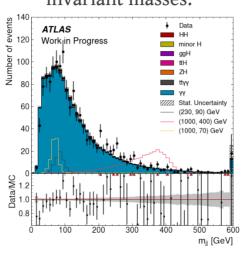
200

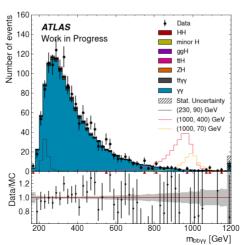
1000

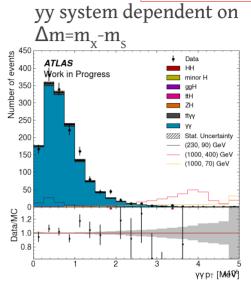

800

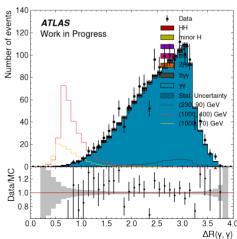

 m_X [GeV]

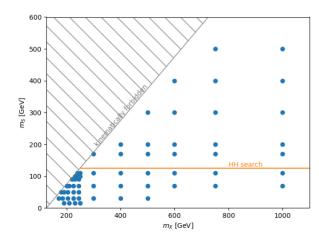
• This will serve as a stepping stone for Run-3.

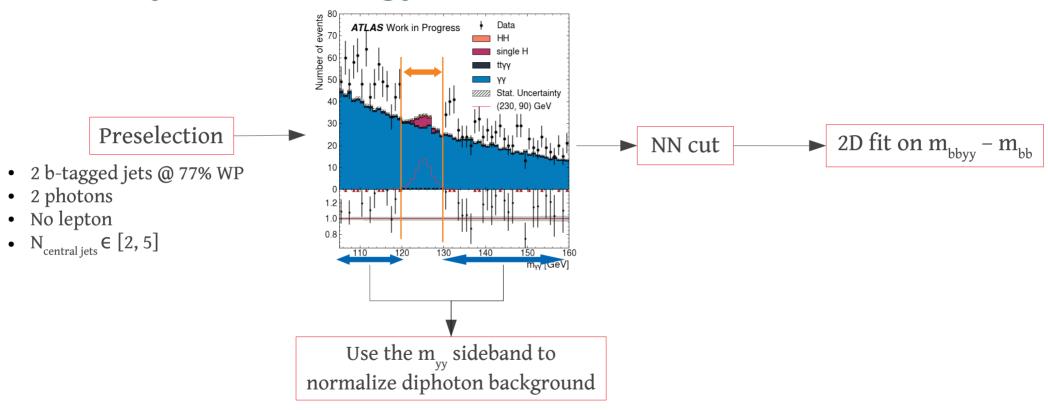

provide model-independent limit.

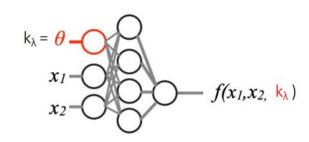

Signal characteristics

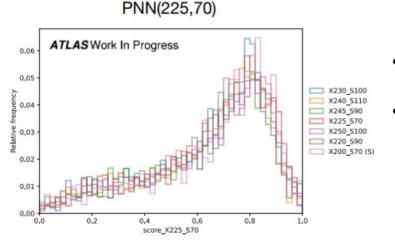


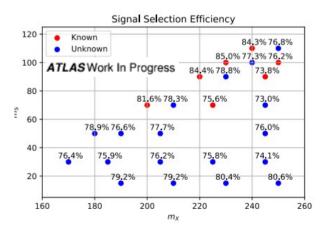




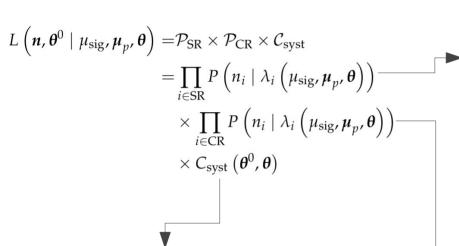




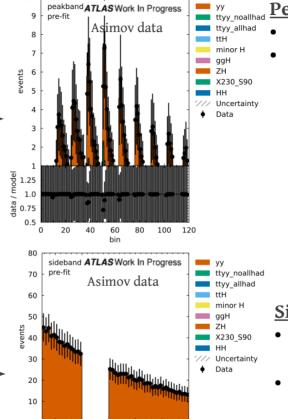

Analysis Strategy


Parameterized NN development

- We are developing PNN with m_x and m_s as parameters.
- Signal efficiency and background rejection seems to be good, for both known and unknown points.
- The PNN seems to learned to generalize the signals, but then struggle to distinguish between them.


- Now we plan to try with DNN (without parameterization)
- Test training with and without m_{bb} and m_{bbyy} to see if it harms the 2D fit by creating sensitivity holes in-between signal grid.

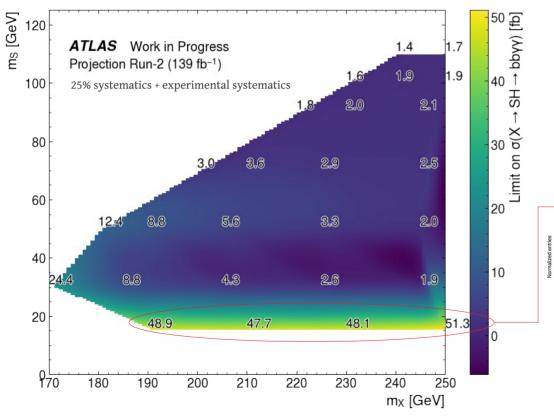
Fit strategy


• We will use binned likelihood fit powered by pyhf.

Systematics

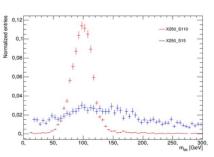
Theory & experimental uncertainties

150

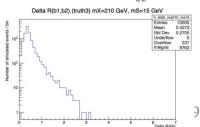

Peakband

- Acts as a signal region.
- 120 bins in total from a 2D distribution:
 - m_{bbyy} ∈ [160, 400] GeV, bin width 20 GeV
 - $m_{bb} \in [0, 200]$ GeV, bin width 20 GeV

Sideband


- To normalize the dominant yy continuum background.
- $m_{yy} \in [105, 120] | [130, 160] \text{ GeV},$ bin width 1 GeV.

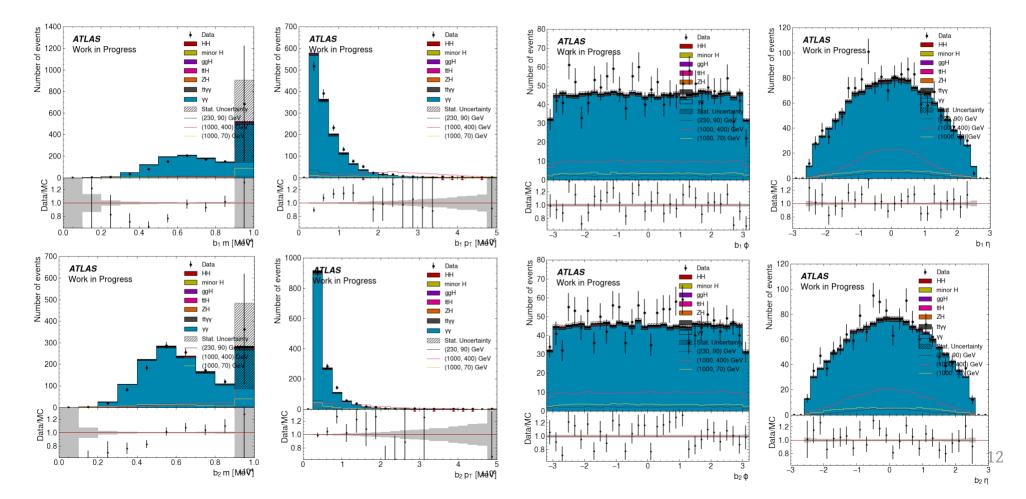
Limit projection



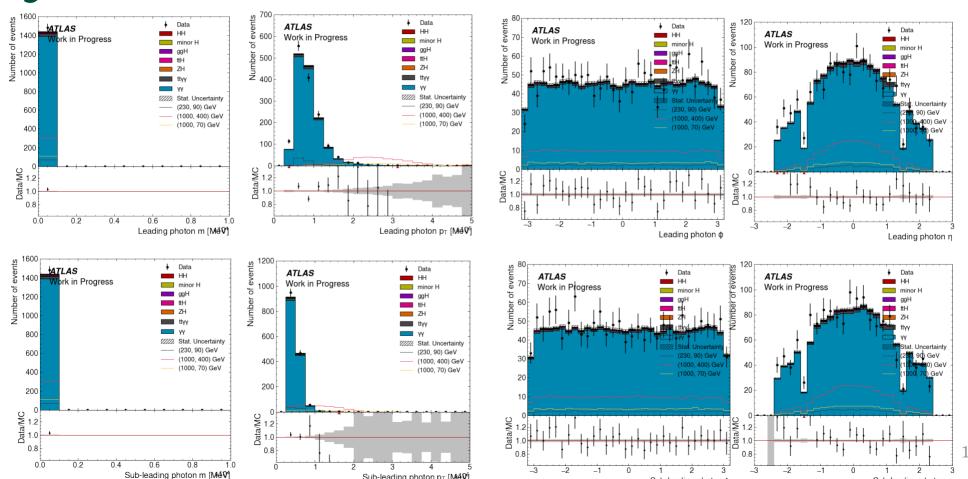
- Here is the projected expected cross section limit at 139 fb⁻¹.
- Evaluated at preselection.
- With the help of better signal/background discrimination by NN we hope to improve upon this.

b-jet merging issue here: •

- Low mS causing the S(bb) system to be boosted.
- > 2 b's in 1 jet.
- > No m_{bb} peak


Summary

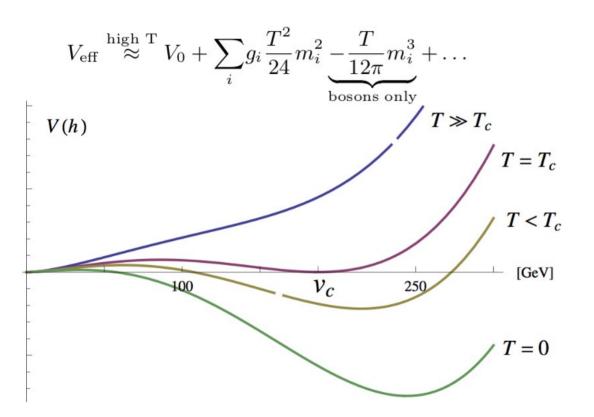
- New X→SH search on bbyy final states is being developed.
- Using 2 dimensional parameter space
- 2D fitting framework is used to put limit on 2D parameter space: $m_{bbvv}^{}$ - $m_{bb}^{}$.
- (P)NN for optimized selection is under-development.
- Preliminary cross-section limit projected with Run-2 integrated luminosity is shown.

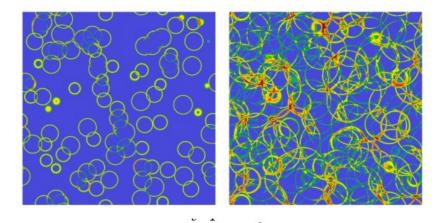

• Stay tune for more results!

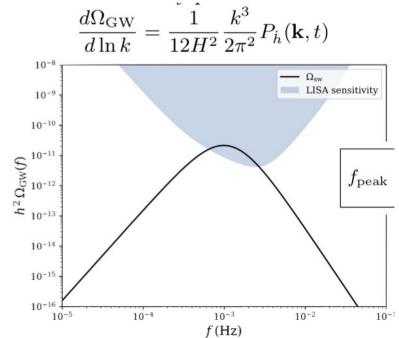
BACKUP

B kinematics

y kinematics

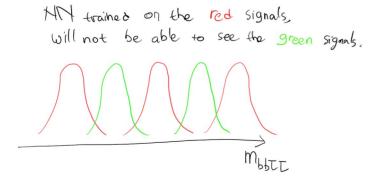


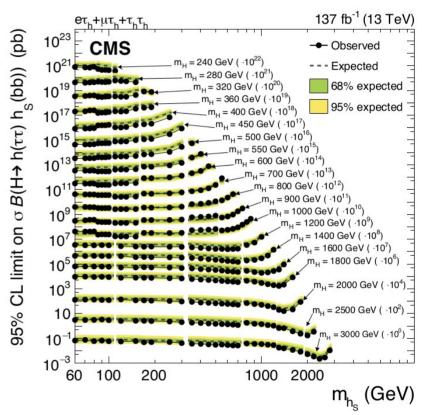

Sub-leading photon φ


Sub-leading photon η

Sub-leading photon p_T [Med 0]

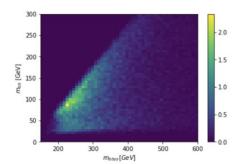
Higgs sector and GW





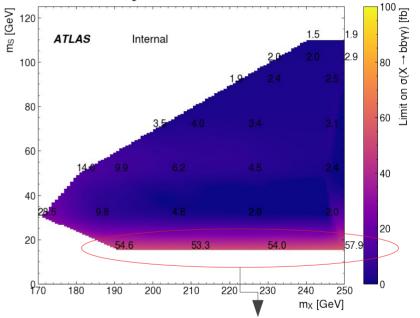
Source: G. Dorsch in LHCP2022

Sensitivity gap problem


- Study case: CMS SH→bbTT (arXiv:2106.10361)
- CMS did 1D fit for each mH value, scanning the mS.
- They utilized many NNs trained on $m_{bb\tau\tau}$
 - May leave sensitivity gaps between trained $m_{bb\tau\tau}!$
 - The limit on the spacing of the signal grid cannot be interpolated from the result!

2D fit framework

- A fitting framework to handle fit on 2D distributions: m_{bbvv}-m_{bb} is being developed.
- Fitting utilities imported from pyhf.
- Full python environment and dedicated only for binned data analysis.



Motivation for binned data analysis:

- Correlation between m_{bbyy} m_{bb}
 - Difficult to come up with analytical function that can handle this correlation.
- Binned fit is able to reproduce the unbinned fit result (see backup).

Preliminary limit:

- Only preselection
- Flat systematics = 25%

B-jet merging issue here

- 1 1.00	. 1 - 1 . 1	1 .1	1 1	JET_EffectiveNP_Statistical21up	$0.1\% \pm 0.0\%$	$-0.2\% \pm -0.00$	0.0%
Relative difference to non	ninal. Evaluated	in the peal	kband.	JET_EffectiveNP_Statistical31down	$0.0\% \pm 0.0\%$	$-0.0\% \pm -0.0$	%
		1		JET_EffectiveNP_Statistical31up	$-0.0\% \pm -0.0\%$	$-0.0\% \pm -0.0\%$)
Error is statistical				JET_EffectiveNP_Statistical41down	$-0.0\% \pm -0.0\%$	$-0.0\% \pm -0.0\%$	
				JET_EffectiveNP_Statistical41up	$0.0\% \pm 0.0\%$	$-0.0\% \pm -0.0\%$	
tematics	${ m tt} H$	ggH	ZH	JET_EffectiveNP_Statistical51down	$0.0\% \pm 0.0\%$	$-0.0\% \pm -0.0\%$	
M	$0.0\% \pm 0.0\%$	$0.0\% \pm 0.0\%$	$0.0\% \pm 0.0\%$	JET_EffectiveNP_Statistical51up	$-0.0\% \pm -0.0\%$	$-0.0\% \pm -0.0\%$	
OM		$0.0\% \pm 0.0\%$ $2.3\% \pm 0.0\%$	$0.0\% \pm 0.0\%$ $0.3\% \pm 0.0\%$	JET_EffectiveNP_Statistical61down	$0.0\% \pm 0.0\%$	$-0.0\% \pm -0.0\%$	
GRESOLUTION_ALL_1down	$0.3\% \pm 0.0\% \\ -0.5\% \pm -0.0\%$		$-0.5\% \pm 0.0\%$ $-0.5\% \pm -0.0\%$	JET_EffectiveNP_Statistical61up	$-0.0\% \pm -0.0\%$	$-0.0\% \pm -0.0\%$	
_RESOLUTION_ALL1up	$-0.5\% \pm -0.0\%$ $-0.2\% \pm -0.0\%$	$1.4\% \pm 0.0\%$ $1.4\% \pm 0.0\%$	$-0.5\% \pm -0.0\%$ $-0.2\% \pm -0.0\%$	JET_EtaIntercalibration_Modelling1down		$-1.5\% \pm -0.0\%$	
SCALE ALL 1	$-0.2\% \pm -0.0\%$ $-0.5\% \pm -0.0\%$		$-0.2\% \pm -0.0\%$ $-0.5\% \pm -0.0\%$	JET_EtaIntercalibration_Modelling1up	$-0.6\% \pm -0.0\%$	$1.2\% \pm 0.0\%$	
SCALE_ALL_1up				JET_EtaIntercalibration_NonClosure_2018data1down		$-0.3\% \pm -0.0\%$	
EFF_Eigen_B_0_1down	$1.7\% \pm 0.0\%$	$3.0\% \pm 0.1\%$	$2.8\% \pm 0.0\%$	JET_EtaIntercalibration_NonClosure_2018data_1up	$-0.1\% \pm -0.0\%$	$0.2\% \pm 0.0\%$	
EFF_Eigen_B_0_1up	$-1.7\% \pm -0.0\%$	$-3.0\% \pm -0.1\%$	$-2.8\% \pm -0.0\%$	JET_JER_EffectiveNP_10_1down	$-0.2\% \pm -0.0\%$	$0.4\% \pm 0.0\%$	
EFF_Eigen_B_1_1down	$1.1\% \pm 0.0\%$	$0.6\% \pm 0.0\%$	$1.0\% \pm 0.0\%$	JET_JER_EffectiveNP_10_1up	$-0.0\% \pm -0.0\%$		
EFF_Eigen_B_1_1up	$-1.1\% \pm -0.0\%$	$-0.6\% \pm -0.0\%$	$-1.0\% \pm -0.0\%$	JET_JER_EffectiveNP_11_1down	$-0.0\% \pm -0.0\%$		
EFF_Eigen_B_2_1down	$-0.1\% \pm -0.0\%$	$-0.2\% \pm -0.0\%$	$-0.2\% \pm -0.0\%$	JET_JER_EffectiveNP_11_1up	$-0.1\% \pm -0.0\%$	$0.3\% \pm 0.0\%$	
EFF_Eigen_B_2_1up	$0.1\% \pm 0.0\%$	$0.2\% \pm 0.0\%$	$0.2\% \pm 0.0\%$	JET_JER_EffectiveNP_1_1down	$-0.0\% \pm -0.0\%$		
CFF_Eigen_C_01down	$0.4\% \pm 0.0\%$	$1.7\% \pm 0.0\%$	$0.7\% \pm 0.0\%$	JET_JER_EffectiveNP_1_1up	$-0.3\% \pm -0.0\%$	$0.1\% \pm 0.0\%$	
EFF_Eigen_C_01up	$-0.4\% \pm -0.0\%$	$-1.6\% \pm -0.0\%$	$-0.7\% \pm -0.0\%$	JET_JER_EffectiveNP_2_1down	$0.0\% \pm 0.0\%$		
FF_Eigen_C_1_1down	$-0.1\% \pm -0.0\%$	$-0.3\% \pm -0.0\%$	$-0.1\% \pm -0.0\%$	JET_JER_EffectiveNP_2_1up	$-0.5\% \pm -0.0\%$	$0.8\% \pm 0.0\%$	
EFF_Eigen_C_1_1up	$0.1\% \pm 0.0\%$	$0.3\% \pm 0.0\%$	$0.1\% \pm 0.0\%$	JET_JER_EffectiveNP_3_1down	$-0.4\% \pm -0.0\%$	$0.3\% \pm 0.0\%$	
FF_Eigen_C_2_1down	$-0.0\% \pm -0.0\%$	$0.0\% \pm 0.0\%$	$-0.0\% \pm -0.0\%$	JET_JER_EffectiveNP_3_1up	$0.0\% \pm 0.0\%$		
EFF_Eigen_C_2_1up	$0.0\% \pm 0.0\%$	$-0.0\% \pm -0.0\%$	$0.0\% \pm 0.0\%$	JET_JER_EffectiveNP_4_1down	$-0.5\% \pm -0.0\%$	$0.9\% \pm 0.0\%$	
EFF_Eigen_Light_0_1down	$0.8\% \pm 0.0\%$	$2.9\% \pm 0.1\%$	$0.4\% \pm 0.0\%$	JET_JER_EffectiveNP_4_1up		$-0.3\% \pm -0.0\%$	
EFF_Eigen_Light_0_1up	$-0.8\% \pm -0.0\%$	$-2.6\% \pm -0.0\%$	$-0.4\% \pm -0.0\%$	JET_JER_EffectiveNP_5_1down	$-0.1\% \pm -0.0\%$	$0.1\% \pm 0.0\%$	
EFF_Eigen_Light_1_1down	$0.1\% \pm 0.0\%$	$-0.5\% \pm -0.0\%$	$0.0\% \pm 0.0\%$	JET_JER_EffectiveNP_5_1up	$-0.1\% \pm -0.0\%$		
EFF_Eigen_Light_1_1up	$-0.1\% \pm -0.0\%$	$0.6\% \pm 0.0\%$	$-0.0\% \pm -0.0\%$	JET_JER_EffectiveNP_6_1down	$-0.1\% \pm -0.0\%$	$0.1\% \pm 0.0\%$	
EFF_Eigen_Light_3_1down	$0.0\% \pm 0.0\%$	$-0.0\% \pm -0.0\%$	$0.0\% \pm 0.0\%$	JET_JER_EffectiveNP_6_1up	$-0.1\% \pm -0.0\%$		
EFF_Eigen_Light_3_1up	$-0.0\% \pm -0.0\%$	$0.0\% \pm 0.0\%$	$-0.0\% \pm -0.0\%$	JET_JER_EffectiveNP_7_1down	$-0.0\% \pm -0.0\%$		
EFF_Eigen_Light_4_1down	$-0.1\% \pm -0.0\%$	$-0.1\% \pm -0.0\%$	$-0.0\% \pm -0.0\%$	JET_JER_EffectiveNP_7_1up	$-0.1\% \pm -0.0\%$	$0.1\% \pm 0.0\%$	
TEFF_Eigen_Light_4_1up	$0.1\% \pm 0.0\%$	$0.1\% \pm 0.0\%$	$0.0\% \pm 0.0\%$	JET_JER_EffectiveNP_8_1down		$-0.4\% \pm -0.0\%$	
T_EffectiveNP_Detector1_1down		$-0.1\% \pm -0.0\%$	$-0.0\% \pm -0.0\%$	JET_JER_EffectiveNP_8_1up		$-0.2\% \pm -0.0\%$	
T_EffectiveNP_Detector1_1up	$-0.0\% \pm -0.0\%$	$-0.0\% \pm -0.0\%$	$0.0\% \pm 0.0\%$	JET_JER_EffectiveNP_9_1down		$-0.4\% \pm -0.0\%$	
T_EffectiveNP_Detector2_1down	$0.0\% \pm 0.0\%$	$-0.0\% \pm -0.0\%$	$-0.0\% \pm -0.0\%$	JET_JER_EffectiveNP_9_1up	$-0.1\% \pm -0.0\%$	$0.2\% \pm 0.0\%$	
T_EffectiveNP_Detector2_1up	$-0.0\% \pm -0.0\%$	$-0.0\% \pm -0.0\%$	$0.0\% \pm 0.0\%$	JET_JvtEfficiency_1down	$0.0\% \pm 0.0\%$		
T_EffectiveNP_Mixed1_1down	$0.0\% \pm 0.0\%$	$-0.0\% \pm -0.0\%$	$-0.0\% \pm -0.0\%$	JET_JvtEfficiency_1up	$0.0\% \pm 0.0\%$	$-0.0\% \pm -0.0\%$	
T_EffectiveNP_Mixed1_1up	$-0.0\% \pm -0.0\%$	$-0.0\% \pm -0.0\%$	$0.0\% \pm 0.0\%$	JET_Pileup_OffsetMu_1down	$0.3\% \pm 0.0\%$		
T_EffectiveNP_Mixed2_1down	$-0.0\% \pm -0.0\%$	$0.0\% \pm 0.0\%$	$0.1\% \pm 0.0\%$	JET_Pileup_OffsetMu_1up	$-0.3\% \pm -0.0\%$	$0.6\% \pm 0.0\%$	
T_EffectiveNP_Mixed2_1up	$0.0\% \pm 0.0\%$	$-0.1\% \pm -0.0\%$	$-0.0\% \pm -0.0\%$	JET_Pileup_PtTerm_1down	$-0.0\% \pm -0.0\%$		
T_EffectiveNP_Mixed3_1down	$0.0\% \pm 0.0\%$	$-0.1\% \pm -0.0\%$	$-0.0\% \pm -0.0\%$	JET_Pileup_PtTerm_1up	$0.0\% \pm 0.0\%$		
ET_EffectiveNP_Mixed3_1up	$-0.0\% \pm -0.0\%$	$-0.0\% \pm -0.0\%$	$0.0\% \pm 0.0\%$	PH_EFF_ID_Uncertainty_1down		$-1.6\% \pm -0.0\%$	
ET_EffectiveNP_Modelling11down		$-1.7\% \pm -0.0\%$	$-0.9\% \pm -0.0\%$	PH_EFF_ID_Uncertainty_1up	$1.6\% \pm 0.0\%$	$1.6\% \pm 0.0\%$	
ET_EffectiveNP_Modelling1_1up	$-0.8\% \pm -0.0\%$	$1.4\% \pm 0.0\%$	$0.9\% \pm 0.0\%$	PH_EFF_ISO_Uncertainty1down		$-1.6\% \pm -0.0\%$	
JET_EffectiveNP_Modelling2_1down	$-0.0\% \pm -0.0\%$	$0.0\% \pm 0.0\%$	$0.1\% \pm 0.0\%$	PH EFF ISO Uncertainty 1up		$1.5\% \pm 0.0\%$	

 $0.0\% \pm 0.0\%$ $-0.1\% \pm -0.0\%$

 $0.0\% \pm 0.0\%$ $-0.1\% \pm -0.0\%$

 $-0.0\% \pm -0.0\%$ $-0.0\% \pm -0.0\%$

 $0.0\% \pm 0.0\%$

 $0.0\% \pm 0.0\%$ $-0.0\% \pm -0.0\%$ $-0.0\% \pm -0.0\%$

 $-0.0\% \pm -0.0\%$

 $-0.0\% \pm -0.0\%$

 $-0.0\% \pm -0.0\%$

 $0.0\% \pm 0.0\%$

 $0.0\%\pm0.0\%$

JET_EffectiveNP_Modelling2__1up

 ${\tt JET_EffectiveNP_Modelling3__1up}$

JET_EffectiveNP_Modelling4__1up

JET_EffectiveNP_Modelling3_1down

 ${\rm JET_EffectiveNP_Modelling4__1down}$

PH_EFF_ISO_Uncertainty__1up

PRW_DATASF__1down

PRW_DATASF__1up

PH_EFF_TRIGGER_Uncertainty_1down

PH_EFF_TRIGGER_Uncertainty_1up

 $1.5\% \pm 0.0\%$

 $1.0\%\pm0.0\%$

 $1.7\% \pm 0.0\%$

 $-1.0\% \pm -0.0\%$

 $-2.1\% \pm -0.0\%$

 $1.5\% \pm 0.0\%$

 $1.9\% \pm 0.0\%$

 $\begin{array}{ccc} -1.0\% \pm -0.0\% & -1.0\% \pm -0.0\% \\ 0.9\% \pm 0.0\% & 1.0\% \pm 0.0\% \\ 1.0\% \pm 0.0\% & 1.0\% \pm 0.0\% \end{array} 17$

 $1.9\% \pm 0.0\%$ $-1.7\% \pm -0.0\%$

 $1.5\% \pm 0.0\%$

 $1.5\% \pm 0.0\%$