Search for long-lived particles with displaced vertices in multijet events

Stockholms universitet Filip Backman

Long-lived particles with ATLAS

- There are different types of long-lived searches at the ATLAS experiment
 - Direct searches
 - Indirect searches
- Indirect searches look for decay products of the LLPs, and appear as Displaced vertices (DVs)
- Some SM particles which can be seen as DVs decaying inside the Inner Detector (ID) are K_S and Λ

Indirect searches

Displaced vertices in multijet events

- Looking for long-lived particles in RPV SUSY
- Benchmark models: Strong RPV & EWK
- The quarks hadronize => jets
- Two signal regions
 - High-pT: Optimized for Strong RPV
 - Trackless: Optimized for EWK
- There are no SM interactions that mimic the signature

Strong RPV

$$m_{\widetilde{g}} = 1.6$$
 - 2.6 TeV $m_{\widetilde{arphi}} = 50$ - 2450 GeV

EWK RPV

$$m_{\widetilde{\gamma}}=$$
 100 - 1700 GeV

Small coupling => LLP

Background estimation

- Three main backgrounds
- Two methods were used
 - An MC control background estimate based on the three separate sources
 - A data-driven inclusive estimate based on jet proximity

DV Selection

$$r_{\mathrm{DV}} < 300$$
 mm, $|z_{\mathrm{DV}}| < 300$ mm
 $r_{\mathrm{DV-PV}} > 4$ mm
 $\chi^2/N_{DoF} < 5$

Pass strict material map veto

$$m_{\rm DV} > 10$$
 GeV, $N_{\rm trk} \ge 5$, $N_{\rm trk}^{\rm sel} \ge 2$

Background sources:

hadronic interactions

accidental crossings

merged vertices

Material veto

- Data-driven material map based on DVs from all of Run-2
- Two separate maps for inner and outer region (cut-off at 150mm)
 - Inner uses pure data with a finer bin size
 - Outer uses a combination of data and MC
- Removes ~42% of the fiducial volume
- For this analysis it was extended by also vetoing all adjacent bins in the map ~48% of the volume

SR optimization

- Aiming for around ~1 background event in the SR
- Study made on MC, optimized for Strong RPV grid
- To optimize SR, we used regionbased selections on the DVs to remove background
- Estimated background:
 - High-pT SR: $0.46^{+0.27}_{-0.30}$
 - Trackless SR: $: 0.83^{+0.51}_{-0.53}$

Regions of sensitivity

- Using pyHF to get limits for the search
- Still in progress (requesting more stats)
- Have the best sensitivity at around $\tau = .1$ ns
- Results from unblinding is publically available in <u>Giulia Ripellino's Doctoral</u> <u>thesis</u>

Summary

- A search for LLPs which decay inside the ID of ATLAS has been conducted using two benchmark models with 2 and 3 parameters
- A material veto is used to remove the majority of the background
- Achieved ~1 background event in SR
- The making of final limits is currently in progress using pyHF
- Unblinding has been done, but the results are not yet public through ATLAS

Backup

SR definitions

- Trackless jet requirements:
 - Sum(trk_pt)<5 GeV in jet
 - single: 56 GeV
 - Double: 78 GeV
- High-pT jet requirements:
 - 4j137
 - 5j101
 - 6j83
 - 7j55