- Phase transitions: A source of
cosmic-frontier
phenomenology

Eliel Camargo-Molina




THE STANDARD MODEL
Of Particle Physics
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No Dark Matter
No Inflation
Predicted vacuum energy is huge!

No reason for so much more matter
than anti-matter

Origin of its very special parameter values
No gravity
Why is the Higgs so light?

Vacuum Stability
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The Scalar
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Phase

Transitions
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THE STANDARD MODEL
Of Cosmology
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What is Dark Matter?
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Flatness problem: Initial conditions for a
present-day flat universe are < O(10-60)
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Inflation?
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Vacuum energy is tiny!
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CGC, is it constant?
Hubble constant disagreement

6 free parameters, too much?
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From Bass, De Roeck and Kado. Nature rev.phys.

The Higgs Potential

Re (¢)

 How did we get here?
* The masses of fermions
 Massive gauge bosons

Higgs
potential

Our

vacuum

Stable

7
Metastable

Higgs
field

* Are we staying here?
* A case for BSM
e Early Universe insight

Us?



Scalar Potential

Phase Transitions And The Universe’s History
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The EPWT % BSM?



The Electroweak Phase transition (schematically)

M. Hindmarsh (2008.09136)

M, Hindmarsh



The EWPT in (heavy) BSM

< O Cj(o
v 4 v .
\ — My (t)0 4+ 2 _cf ¢ * Large coefficients
e 8 3 needed for FOPT
* They suggest a sub-TeV
scale of NP
* Or the need to go
beyond dim 6
e ... unlikely
!
5'/ 2 1 &
L WO _Te phe X
\) :"m{uz - \Z“Y)*-‘g

 Smaller coefficients do
the trick

 TeV-scale NP

* Testable at future
colliders

[arXiv:2103.14022 ECM, Enberg, Lofgren]




The SM stability % BSM?



Inflation

The earliest stage in the evolution of the Universe that we have some evidence
for is inflation, a period of accelerating expansion, which made the Universe

spatially flat, homogeneous and isotropic and also generated the initial seeds for

structure formation.

The decay rate of the SM’s vacuum is enhanced during this

period. At the same time, we are here, so there is a limit on how

large that decay rate can be for whatever the theory of nature
IS.

1/4 -3
Cing < 0.02e*NH ~ 1075 V}“f H: ..
~ n 1016 GeV n

Cosmological Aspects of Higgs Vacuum Metastability

Tommi Markkanen® Arttu Rajantie® Stephen Stopyra®

One can use the bounds (5.22) or (5.24) to constrain the Hubble rate during inflation
H;y and other parameters of the theory. This computation can be done in two ways,

either using the instanton calculation of the tunneling rate discussed in Section 4, or using

the stochastic Starobinsky-Yokoyama approach discussed in Section 3.4. The instanton
calculation includes both quantum tunneling and classical excitation, and it can incorporate
interactions and gravitational backreaction at short distances. Because it requires analytic
continuation, it only works with constant Hubble rate Hj,f, but it can still be expected
to be a good approximation when the Hubble rate is slowly varying. In contrast, the
stochastic approach can describe a time-dependent Hubble rate and gives a more detailed
picture of the time evolution, but it includes only the classical excitation process and does
not include interactions on sub-Hubble scales.

Scalar Potential

¢, Higgs fields




The Stochastic formalism

QFT calculations in curved spacetimes are hard!

Calculations can be done by separating scalar fields in long- and short-wave (quantum) Modes,

— d°k - . — .
it = o)+ [ ol = calt ) [ + al G (0]

Which leads to a jump from quantum to classical by studying field averages over Hubble volumes

d 1 / 1 -—-fzi
¢ V(0) +£(1) with (E()E(r2)) = 50

472

And writing everything in terms of probability distributions for the scalar fields (used to calculate exp. values)

where v,, and A,, are eigenfunctions and eigenvalues,

Pn (t, ¢) = €_U(¢) €_Antwn (¢), respectively, of the differential equation

P(t; ) = Pag(¢)+cotbo(9)r (¢)e 21140 (e~ 21)

\ As long as the potential is bounded from below!

(t1 — t2).

T White noise!
1 9?2 ] A2 A,
2 8¢2 W(¢)_ wn T H3



The Stochastic formalism
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FIG. 4. Comparison between war : wfr (left) and Peq, Pfr

(right) for two sets of parameter values. The corresponding
potentials are shown for illustration.

If the potential is bounded from below, and there is an
excited (unstable) state with PDF P+ then

(t)P1(o)

P(t;¢) = (1 — p1(t)) Peq(¢) + p1
) — Peq(9)).

= Peq(¢) +p1()(P1(¢

p1(t) = exp(—=I'(t — tp))

Which compared to

P(t;$) = Peq(¢) +coto(d)1(d)e ™ +0 (e

Makes it easier to see that

[' = A4

—Agt)

[arXiv:2204.02875 ECM, Rajantie]



The Stochastic formalism

382 + f =12 | 24
v =45¢ + 209” + ¢~

Not so easy with unbounded potentials! There is no
equilibrium probability. However

Pi(9) = 1v0(6)41(6).
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tration.

[arXiv:2204.03480 ECM, Carrillo Gonzalez, Rajantie]



The Stochastic formalism, quantum corrections

PERTURBATION THEORY STOCHASTIC APPROACH

The one-loop decay rate is

I (B * | det’ S (¢dp) 1/ _Bn
27T det S” (dgy)

e

The Stochastic approach is classical but non-
perturbative. It captures vacuum decay using the

And the thermal interpretation of de Sitter spacetime: 1" = H /(27) LO potential but no quantum corrections

Which is very hard to calculate even in simple theories.
Using among other approximations, the saddle point

approximation and treatment of different scales with What if we use the constraint effective potential
statistical/field theory approaches one gets: inside the Stochastic formalism to capture them?
/! 2 1 loo
' = i tv e - ASII;‘JE - , _ _
2T \Vt’(;p Can we then get a formalism capturing both non

perturbative and quantum corrections for decay

. . . . rates in de Sitter?
With Utloor the constraint effective potential

e_f d*zU?t loop :/d¢€_s[¢]5 (%/¢d4m_¢b>

Which looks a lot like the escape rate of a
particle with the potential Ulloop



The Stochastic formalism, quantum corrections
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Conclusions

® Phase transitions are a powerful bridge between the early Universe and particle physics
¢ Early days, many interesting questions to address

® The order of the EWPT will be probed experimentally and a GW signal could be the first ”proof” for the
need of physics BSM. Light NP? Heavy TeV scale NP? Both will be tackled at colliders

® Another motivation for BSM can come from inflation. Is the SM stable?

® New methods to perform calculations being developed. Combining stochastic and peturbative
approaches seems to be one way forward!

e Stay tuned! Many interesting themes in combining early universe + scalars + PTs!



