Fingerprints of freeze-in dark matter in an early matter-dominated era

Avik Banerjee

Chalmers University of Technology Gothenburg, Sweden

Based on 2204.03670 Co-Author: Debtosh Chowdhury

Fysikdagarna 2022, Lund 15.06.2022

Freeze-out vs. Freeze-in

Freeze-out	Freeze-in
DM-SM in thermal equilibrium, Large coupling required	DM-SM never in thermal equilibrium, Extremely small coupling
At high temperature DM has thermal abundance	Initial abundance of DM at the end of inflation is negligible
Cosmology at high temperature is irrelevant	Cosmology from the end of inflation till today impacts relic

Early matter domination

BSM motivations for EMD

- Meta-stable matter fields
- Oscillating scalar fields
- Moduli
- SUSY condensates
- Dilaton
- Q-balls
- Curvaton

$$\dot{\rho}_{\phi} + 3(1+\omega)H\rho_{\phi} = -(1+\omega)\Gamma_{\phi}\rho_{\phi}$$

$$\dot{\rho}_{\gamma} + 4H\rho_{\gamma} = (1+\omega)\Gamma_{\phi}\rho_{\phi}$$

$$H = \frac{1}{\sqrt{3}M_{p}}\sqrt{\rho_{\phi} + \rho_{\gamma}}$$

Constraints from BBN: $T_{
m RH}\gtrsim {
m few~MeV}$

Evolution is dependent on the dissipation rate

Matter dissipation rate

In general depends on the temperature and the expansion of the universe

$$\Gamma_{\phi} = \hat{\Gamma} \left(\frac{T}{T_{\text{eq}}} \right)^n \left(\frac{a}{a_{\text{eq}}} \right)^k$$

Examples:

Oscillating scalar fields with $\mathbf{V}(\phi) \sim \phi^\mathbf{p}$ potential

 $\Gamma_{\phi \to f\bar{f}} \propto m_{\phi}(t) \propto a^{-3(p-2)/(p+2)}$, (for fermionic decay),

 $\Gamma_{\phi \to bb} \propto m_{\phi}^{-1}(t) \propto a^{3(p-2)/(p+2)}$, (for bosonic decay),

Garcia et. al. 2012.10756

Moduli decay:

$$\Gamma_{\phi} \propto rac{T^3}{M_p^2}$$

Bodeker, hep-ph/0605030

More Examples:

Γ_{ϕ}	(n,k,ω)	T(z) during EMD _{NA}
const.	(0, 0, 0)	decreases with z
T	(1, 0, 0)	decreases with z
$\langle \phi \rangle^{-2}$	(0, 3, 0)	increases with z
$\frac{T^3}{\langle \phi \rangle^2}$	(3, 3, 0)	increases with z
$\frac{T^2}{\langle \phi \rangle}$	(2, 3/2, 0)	remains constant
$\frac{T^2}{\langle \phi \rangle}$	(2,6/5,1/5)	decreases with z

Mukaida et. al. 1208.3399, 1212.4985 Drewes, 1406.6243 Co et. al. 2007.04328

Epoch	z	T(z)	H(z)
ERD	$z_{\rm inf} < z < 1$	$rac{T_{ m eq}}{z}$	$\sqrt{rac{ ho_{\gamma}(T_{ m eq})}{3M_p^2}}z^{-2}$
$\mathrm{EMD}_{\mathrm{A}}$	$1 < z < z_{\rm NA}$	$rac{T_{ m eq}}{z}$	$\sqrt{\frac{\rho_{\gamma}(T_{\rm eq})}{3M_p^2}}z^{-\frac{3}{2}(1+\omega)}$
$\mathrm{EMD}_{\mathrm{NA}}$	$z_{ m NA} < z < z_{ m RH}$	$T_{ m RH} \left(rac{z}{z_{ m RH}} ight)^{rac{\delta-8+2n}{8-2n}}$	$\sqrt{rac{ ho_{\gamma}(T_{ m eq})}{3M_p^2}}z^{-rac{3}{2}(1+\omega)}$
RD	$z_{\mathrm{RH}} < z$	$T_{ m eq} z_{ m RH}^{rac{1-3\omega}{4}} z^{-1}$	$\frac{\sqrt[4]{\rho_{\gamma}(T_{\rm RH})}}{\sqrt{3}M_p} \left(\frac{z}{z_{\rm RH}}\right)^{-2}$

$$\Gamma_{\phi} = \hat{\Gamma} \left(\frac{T}{T_{\text{eq}}} \right)^n \left(\frac{a}{a_{\text{eq}}} \right)^k$$

Freeze-in production rate

Freeze-in DM yield during EMD

- DM yield dilutes due to entropy production
- Non-trivial temperature evolution also changes the DM production rate during non-adiabatic EMD

$$\frac{\Omega h^2}{\Omega h_{\rm RD}^2} = \frac{Y_{\chi}(z_0)}{Y_{\chi}^{\rm RD}(z_0)} \left(\frac{z_0^{\rm RD}}{z_0}\right)^3 = \frac{Y_{\chi}(z_0)}{Y_{\chi}^{\rm RD}(z_0)} \left(\frac{T_{\rm RH}}{T_{\rm eq}}\right)^{\frac{1-3\omega}{1+\omega}}$$
$$\sim 10^{-2} - 10^{-3}$$

$$\frac{dY_{\chi}(z)}{dz} = \frac{z^2 R(T(z))}{H(z)}$$

Larger coupling is required to saturate freeze-in relic in presence of EMD epoch

Dark photon portal

$$\mathcal{L} = -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} - \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu} + \frac{1}{2} M_{A'}^2 A'_{\mu} A'^{\mu} + \bar{\chi} \left(i \partial \!\!\!/ - m_{\chi} \right) \chi + g_D \bar{\chi} \gamma^{\mu} A'_{\mu} \chi$$

Parameter space staisfying observed relic is accessible to experiments in the presence of an early matter dominated era

Summary

 Freeze-in DM relic depends on the non-standard epochs of cosmology at high temperatures

 An epoch of pre-BBN early matter domination leads to freeze-in with larger couplings

 Details depend crucially on the temperature and expansion dependent dissipation rate of the dominating matter field

• Dark photon portal dark matter model may come under the experimental radar in presence of early matter domination

