

Speeding up SM Amplitude Calculations with Chirality Flow

FYSIKDAGARNA 15 JUNE 2022 - ANDREW LIFSON

BASED ON HEP-PH:2003.05877 (EPJC), HEP-PH:2011.10075 (EPJC), AND HEP-PH:2203.13618 (ACCEPTED BY EPJC)

IN COLLABORATION WITH JOAKIM ALNEFJORD, CHRISTIAN REUSCHLE, MALIN SJÖDAHL, AND ZENNY WETTERSTEN

Introduction

Scattering Amplitudes Recap

Chirality Flow

Massless QED Examples

Automatio

Aim and method Results

Conclusions

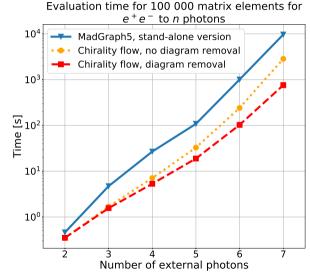
- 1 Introduction
 - Scattering Amplitudes Recap
- 2 Chirality Flow
 - Flow Rules
 - Massless QED Examples
- 3 Automation
 - Aim and method
 - Results
- 4 Conclusions

Our Main Result (hep-ph:2203.13618)

Introduction

Scattering Amplitudes Recap

Results



How to Calculate a Process

Introduction

Scattering Amplitudes Recap

Chirality Flor

Flow Rules

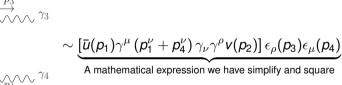
Automatic

Aim and methor

Conclusion

Sum all Feynman diagrams, square, and integrate

Often spin structure is non-trivial



Most common method: use helicity basis

Each diagram is a complex number, easy to square Can use algebra to simplify first, or brute force matrix multiplication

Scattering Amplitudes Recap

Chirality Floy

Massless OFD Evans

Automatic

Aim and meth

Conclusion

$\begin{array}{c} e^{+} & \xrightarrow{p_{2}} & \xrightarrow{p_{3}} & \gamma_{3}^{-} \\ + & & & \downarrow^{+} \\ \downarrow^{+} & \downarrow^{+} \\ e^{-} & & \downarrow^{p_{1}} & \gamma_{4}^{+} \end{array}$

- $|p\rangle \equiv$ right-chiral spinor
- $|p| \equiv |eft\text{-chiral spinor}|$
- lacksquare $au^{\mu}, ar{ au}^{\mu} \equiv ext{Pauli matrices}$
- lacksquare $\langle ij \rangle \sim [ij] \sim \sqrt{2p_i \cdot p_j}$

Spinor helicity: analytic

$$\sim \langle p_{1}|\bar{\tau}^{\mu}\underbrace{(|p_{1}]\langle p_{1}|+|p_{4}]\langle p_{4}|)}_{p_{1}+p_{4}}\bar{\tau}^{\nu}|p_{2}\underbrace{\frac{\langle r_{3}|\bar{\tau}_{\nu}|p_{3}]}{\langle r_{3}3\rangle}}_{\epsilon_{3}^{-}}\underbrace{\frac{[r_{4}|\tau_{\mu}|p_{4})}{[4r_{4}]}}_{[4r_{4}]}$$

$$= \frac{(\langle p_{1}|\bar{\tau}^{\mu}|p_{1}]+\langle p_{1}|\bar{\tau}^{\mu}|p_{4}])[r_{4}|\tau_{\mu}|p_{4}\rangle}{\langle r_{3}3\rangle[4r_{4}]}$$

$$= \frac{\langle 1r_{4}\rangle([41]\langle 13\rangle+[44]\langle 43\rangle)[r_{3}2]}{\langle r_{3}3\rangle[4r_{4}]} = \underbrace{\frac{\langle 1r_{4}\rangle([41]\langle 13\rangle[r_{3}2]}{\langle r_{3}3\rangle[4r_{4}]}}_{\text{Fierz identities like }\langle i|\bar{\tau}^{\mu}|j|[k|\tau_{\mu}|l\rangle=\langle il\rangle[kl]}_{[il]} = \underbrace{\frac{\langle 1r_{4}\rangle([41]\langle 13\rangle[r_{3}2]}{\langle r_{3}3\rangle[4r_{4}]}}_{[il]=0}$$

Scattering Amplitudes Recap

Chirality Flor

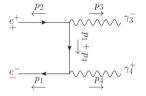
Massless QED Exami

Massioss GLD Lxam

Automatio

Results

Conclusion



- $|p\rangle\equiv$ right-chiral spinor
- $|p| \equiv |eft\text{-chiral spinor}|$
- lacksquare $au^{\mu}, ar{ au}^{\mu} \equiv ext{Pauli matrices}$
- lacksquare $\langle ij \rangle \sim [ij] \sim \sqrt{2p_i \cdot p_j}$

Spinor helicity: explicit matrix multiplication

$$\sim \left[ar{u}^-(p_1)\gamma^\mu\epsilon_\mu^+(p_4)\left(p_1^
u+p_4^
u
ight)\gamma_
u\gamma^
ho\epsilon_
ho^-(p_3)v^+(p_2)
ight]$$

Most common numerical method

Scattering Amplitudes Recap

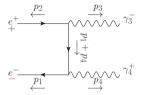
Chirality Flor

Flow Rules
Massless OFD Examp

Lutomatio

Aim and meth Results

Conclusion



- $|p\rangle\equiv$ right-chiral spinor
- $|p| \equiv \text{left-chiral spinor}$
- lacksquare $au^{\mu}, ar{ au}^{\mu} \equiv ext{Pauli matrices}$
- lacksquare $\langle ij \rangle \sim [ij] \sim \sqrt{2p_i \cdot p_j}$

Spinor helicity: explicit matrix multiplication

$$\sim \left[ar{u}^-(
ho_1)\gamma^\mu\epsilon^+_\mu(
ho_4)\left(
ho_1^
u+
ho_4^
u
ight)\gamma_
u\gamma^
ho\epsilon^-_
ho(
ho_3)v^+(
ho_2)
ight]$$

Most common numerical method

Can we systematically remove need for algebra or matrix multiplication?

Chirality Flow Building Blocks

Introduction

Scattering Amplitudes Recap

Chirality Flow

Massless OFD Example

Automatio

Results

Conclusion

LUND

UNIVERSITY

Key idea (hep-ph:2003.05877)

Draw & connect lines to directly obtain inner products $\langle ij \rangle \sim [ij] \sim \sqrt{2p_i \cdot p_j}$ Removes need to do algebra or matrix multiplication

Define spinors as lines

$$\bar{u}_{i}^{-} = \bar{v}_{i}^{+} = \langle i | \alpha = \bigcirc \cdots i , \quad u_{j}^{+} = v_{j}^{-} = |j\rangle_{\alpha} = \bigcirc \cdots j$$

$$\bar{u}_{i}^{+} = \bar{v}_{i}^{-} = [i|_{\dot{\beta}} = \bigcirc \cdots \cdots i , \quad u_{j}^{-} = v_{j}^{+} = |j]^{\dot{\beta}} = \bigcirc \cdots \cdots j$$

Spinor inner products follow

$$\langle i|^{\alpha}|j\rangle_{\alpha} \equiv \langle ij\rangle = -\langle ji\rangle = i$$

$$[i|_{\dot{\beta}}|j]^{\dot{\beta}} \equiv [ij] = -[ji] = i$$
 j

Define slashed momentum as dot

Andrew Lifson Automating Chirality Flow 15th June 2022 6/15

The Massless QED Flow Rules: External Particles

oduction

Scattering Amplitudes Recap

шашу г

Flow Rules
Massless QED Examples

Automation

Aim and method Results

Conclusion

Species	Feynman	Flow
$\bar{u}^-(p_i)$	<u>i</u>	i
$v^-(p_j)$	$\frac{j}{j}$	j
$v^+(p_j)$		j
$\bar{u}^+(p_i)$		i
$\epsilon^\mu(p_i,r)$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\epsilon_+^\mu(p_i,r)$	$\bigcirc \sim \sim \sim^i_+$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Left-chiral \equiv dotted lines

right-chiral ≡ solid lines

The QED Flow Rules: Vertices and Propagators

roduction

Scattering Amplitudes Recap

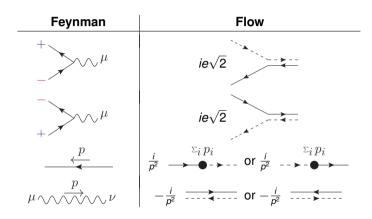
irality Flov

Flow Rules

Massless QED Examples

Aim and method Results

Conclusion



Left-chiral ≡ dotted lines

right-chiral \equiv solid lines

The Non-abelian Massless QCD Flow Vertices

ntroduction

Scattering Amplitudes Recap

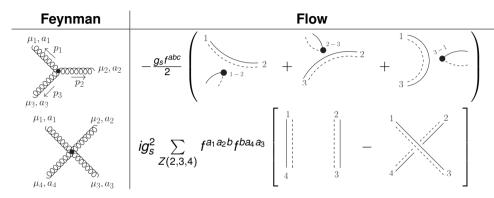
Chirality Fl

Flow Rules

Automotio

Aim and methor

Conclusion



Arrow directions only consistently set within full diagram Double line $\equiv g_{\mu\nu}$, momentum dot $\equiv p_{\mu}$ Rules for rest of SM also known (hep-ph:2011.10075)

The Non-abelian Massless QCD Flow Vertices

ntroduction

Scattering Amplitudes Recap

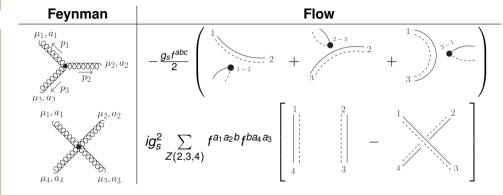
nirality F

Flow Rules

Automatic

Aim and methor

Conclusion



Arrow directions only consistently set within full diagram Double line $\equiv g_{\mu\nu}$, momentum dot $\equiv p_{\mu}$

Rules for rest of SM also known (hep-ph:2011.10075)

Scattering Amplitudes Recap

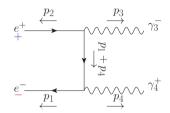
Chirality Flov

Massless QED Examples

Automatic

Aim and metho Results

Conclusion



Spinor helicity:
$$\sim \langle p_{1}|\bar{\tau}^{\mu}\underbrace{(|p_{1}]\langle p_{1}|+|p_{4}]\langle p_{4}|)}_{p_{1}+p_{4}}\bar{\tau}^{\nu}|p_{2}\underbrace{\frac{\langle r_{3}|\bar{\tau}_{\nu}|p_{3}]}{\langle r_{3}3\rangle}}_{\epsilon_{3}}\underbrace{\frac{[r_{4}|\tau_{\mu}|p_{4})}{[4r_{4}]}}_{[4r_{4}]}$$

$$= \frac{(\langle p_{1}|\bar{\tau}^{\mu}|p_{1}]+\langle p_{1}|\bar{\tau}^{\mu}|p_{4}])[r_{4}|\tau_{\mu}|p_{4}\rangle}{\langle r_{3}3\rangle[4r_{4}]} (\langle p_{1}|\bar{\tau}^{\nu}|p_{2}]+\langle p_{4}|\bar{\tau}^{\nu}|p_{2}])[p_{3}|\tau_{\nu}|r_{3}\rangle}_{\langle r_{3}3\rangle[4r_{4}]}$$

$$= \frac{\langle 1r_{4}\rangle([41]\langle 13\rangle+[44]\langle 43\rangle)[r_{3}2]}{\langle r_{3}3\rangle[4r_{4}]} = \frac{\langle 1r_{4}\rangle[41]\langle 13\rangle[r_{3}2]}{\langle r_{3}3\rangle[4r_{4}]}$$

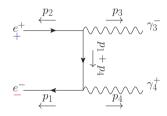
Fierz identities like $\langle i|\bar{\tau}^{\mu}|j][k|\tau_{\mu}|I\rangle = \langle iI\rangle[kj]$

[ii]=0

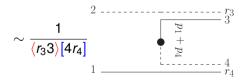
Scattering Amplitudes Recap

Massless QED Examples

Aim and method Results



Chirality flow:



Introduction

Scattering Amplitudes Recap

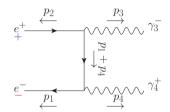
Chirality Flo

Massless QED Examples

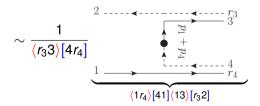
Automatio

Aim and method Results

Conclusion



Chirality flow:



A complicated QED Example

Introduction
Scattering Amplitudes Recap

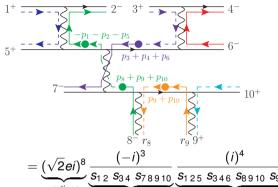
Chirality Flow

Massless QED Examples

Automatio

Results

Conclusion



Spinor-helicity analytic:

- 5 charge conjugation/Fierz+ rearranging
- Not possible to fit on single slide!

$$=\underbrace{(\sqrt{2}ei)^8}_{\text{vertices}}\underbrace{\frac{(-i)^3}{s_{1\,2}\ s_{3\,4}\ s_{7\,8\,9\,10}}}_{\text{photon propagators}}\underbrace{\frac{(i)^4}{s_{1\,2\,5}\ s_{3\,4\,6}\ s_{8\,9\,10}\ s_{9\,10}}}_{\text{fermion propagators}}\underbrace{\frac{1}{[8r_8]\langle r_99\rangle}}_{\text{polarization vectors}}$$

$$\frac{1}{[8r_8]\langle r_99\rangle} \quad [15]\langle 64\rangle [10 \ 9]$$

$$\left(\langle r_99\rangle[9r_8]+\langle r_910\rangle[10r_8]\right)\left(\underbrace{[33]}\langle 37\rangle+[34]\langle 47\rangle+[36]\langle 67\rangle\right)$$

$$\times \left(-\langle 89 \rangle [91]\langle 12 \rangle - \langle 89 \rangle [95]\langle 52 \rangle - \langle 8\,10 \rangle [10\,\,1]\langle 12 \rangle - \langle 8\,10 \rangle [10\,\,5]\langle 52 \rangle\right)$$

MadGraph and the Automation of Chirality Flow

Introduction

Scattering Amplitudes Recap

Chirality Fl

Massless OFD Example

Automatio

Aim and method

Conclusion

Summary

- Before: Quicker/easier to do explicit multiplication than spin algebra analytically
- We have made the analytical spin algebra trivial
- Can we use this to make even faster numerics?

MadGraph and the Automation of Chirality Flow

Introduction

Scattering Amplitudes Recap

hirality Flo

Flow Rules
Massless QED Example

Automatio

Aim and method

Conclusion

Summary

- Before: Quicker/easier to do explicit multiplication than spin algebra analytically
- We have made the analytical spin algebra trivial
- Can we use this to make even faster numerics?

Use MadGraph5_aMC@NLO (MG5aMC) for proof of concept automation

- Make minimal changes to massless QED in MG5aMC
- Pro: any difference in speed from our changes ⇒ sound conclusions
- Con: MG5aMC not designed for chirality flow ⇒ not optimal implementation

Sources of Expect Speed Gains

Introduction

Scattering Amplitudes Recap

Chirality Flow

Massless QED Examples

Lutomation

Aim and method

Results

Conclusion

- Simplified vertices and propagators
 - We minimise matrix multiplication
 - Each component of a calculation is simpler

Sources of Expect Speed Gains

Scattering Amplitudes Recap

Chirality Flow

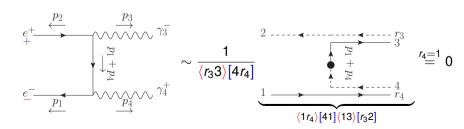
Massless QED Example

Automatio

Aim and method

Conclusion

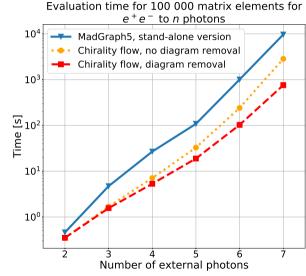
- Simplified vertices and propagators
 - We minimise matrix multiplication
 - Each component of a calculation is simpler
- 2 Gauge-based diagram removal
 - Polarisation vectors contain arbitrary gauge-reference spinor of momentum *r*
 - Spinor inner products antisymmetric $\Rightarrow \langle ii \rangle = [jj] = 0$
 - Chirality-flow makes optimal choice of r obvious \Rightarrow remove diagrams!



Our Main Result (hep-ph:2203.13618)

Scattering Amplitudes Recap

Results



Conclusions and Outlook

Introduction

Scattering Amplitudes Recap

irality Flov

Flow Rules

Lutomatic

Aim and metho Results

Conclusions

Conclusions:

- Chirality flow is the shortest route from Feynman diagram to complex number
- We automised it for massless QED, found significant gains in MadGraph

Outlook and other work in this area:

- Malin Sjödahl and Simon Plätzer used chirality flow as basis for resummation (hep-ph:2204.03258)
- Use method analytically to calculate loop amplitudes
 - Ongoing work with Malin Sjödahl, Simon Plätzer and AL
- Automate for rest of (tree-level) Standard Model and tweak algorithm to use all possible features of chirality flow
 - Malin Sjödahl to supervise two master students to help achieve this

The Non-abelian Massless QCD Flow Vertices

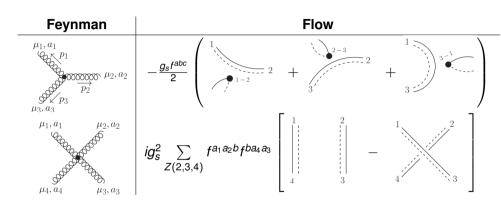
Backup Slides
Massless QCD

Massive Chirality Flow

Lorentz Group Details

Spinor-hel details

Chirality-Flow Motivation



Arrow directions only consistently set within full diagram Double line $\equiv g_{\mu\nu}$, momentum dot $\equiv p_{\mu}$

QCD Example: $q_1\bar{q}_1 \rightarrow q_2\bar{q}_2g$

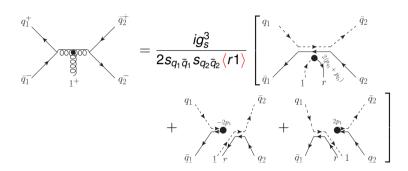
Backup Slides
Massless QCD

Massive Chirality Flow

Lorentz Group Details

Spinor-hel detail

Chirality-Flow Motivation



$$\begin{bmatrix} \cdots \end{bmatrix} \equiv \left\{ 2[q_1\bar{q}_2]\langle q_2\bar{q}_1\rangle ([1q_1]\langle q_1r\rangle + [1\bar{q}_1]\langle 1r\rangle) \\ -2[q_11]\langle 1\bar{q}_1\rangle \langle q_2r\rangle [1\bar{q}_2] + 2[q_11]\langle r\bar{q}_1\rangle \langle q_21\rangle [1q_2] \right\}$$

Incoming Massive Spinors in Chirality Flow

Backup Slides
Massless QCD

Massive Chirality Flow

Massive Examples

Lorentz Group Details

Spinor-hel details

Chirality-Flow Motivation

Spin operator $-\frac{\Sigma^{\mu}s_{\mu}}{2}=\frac{\gamma^{5}s^{\mu}\gamma_{\mu}}{2}, s^{\mu}=\frac{1}{m}(p^{\flat,\mu}-\alpha q^{\mu})$			
Spinor	Feynman	Flow	
$ar{v}^-(ho)$	<u>p</u> _ p	$\left(\bigcirc \cdots \blacktriangleleft \cdots p^{\flat} , \sqrt{\alpha} e^{i\varphi} \bigcirc \blacktriangleleft q \right)$	
$ar{v}^+(ho)$	p p +	$\left[\left(-\sqrt{\alpha} \mathbf{e}^{-i\varphi} \bigcirc \cdots \blacktriangleleft \cdots q \right) \right]$	
<i>u</i> ⁻ (<i>p</i>)		$\left(\sqrt{\alpha} e^{i\varphi} $	

 $p^{\mu}=p^{\flat,\mu}+\alpha q^{\mu}\;,\quad (p^{\flat})^2=q^2=0\;,\quad e^{i\varphi}\sqrt{\alpha}=rac{m}{(p^{\flat}q)}\;,\qquad e^{-i\varphi}\sqrt{\alpha}=rac{m}{(qp^{\flat})}$

Andrew Lifson Automating Chirality Flow 15th June 2022 3/10

Some Fermion Flow Rules

Backup Slides
Massless QCD

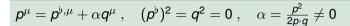
Massive Chirality Flow

Lawrente Overre Detail

Lorentz Group Details

Spinor-hel detai

Chirality-Flov



Fermion-vector vertex

$$= ie(P_L C_L + P_R C_R) \gamma^{\mu} = ie\sqrt{2} \begin{pmatrix} 0 & C_R \\ C_L & 0 \end{pmatrix}$$

Fermion propagator

$$\frac{i}{p^2 - m_f^2} \begin{pmatrix} m_f \delta^{\dot{\alpha}}_{\ \dot{\beta}} & \sqrt{2} p^{\dot{\alpha}\beta} \\ \sqrt{2} \bar{p}_{\alpha\dot{\beta}} & m_f \delta_{\alpha}^{\ \beta} \end{pmatrix} = \frac{i}{p^2 - m_f^2} \begin{pmatrix} m_f \dot{\alpha} & \dot{\beta} & \ddots & \ddots \\ & \ddots & \ddots & \ddots & \ddots \\ & p_i & \ddots & \ddots & \ddots \\ & & p_i & \ddots & \ddots & \ddots \end{pmatrix}$$

Left and right chiral couplings may differ

A Massive *Illuminating* Example

Backup Slide Massless QCD

Massive Chirality Flow Massive Examples

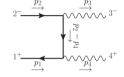
Lorentz Group Details

Spinor-hel detail

Chirality-Flow Motivation

Consider the same diagram of $f_1^+ \bar{f}_2^- \to \gamma_3^+ \gamma_4^-$ as before but include mass m_f

- Obtain 3 new terms
- Simplify with choices of q_1, q_2, r_3, r_4
- $lackbox{e}^{iarphi_i}\sqrt{lpha_i}=rac{m_i}{\langle
 ho_i^\flat q_i
 angle}\;,\quad lackbox{e}^{-iarphi_i}\sqrt{lpha_i}=rac{m_i}{[q_i
 ho_i^\flat]}$



$$=\frac{-2ie^{2}}{(s_{23}-m_{f}^{2})\langle r_{3}3\rangle[4r_{4}]}\left\{\begin{array}{c} p_{2}^{\frac{1}{2}} & r_{3}^{\frac{1}{3}} \\ p_{4}-p_{1}^{\frac{1}{2}}-q_{1} \\ p_{1}^{\frac{1}{2}} & r_{4}^{\frac{1}{4}} \end{array}\right. -\sqrt{\alpha_{1}\alpha_{2}}e^{i(\varphi_{2}-\varphi_{1})} \left(\begin{array}{c} q_{2} & r_{3}^{\frac{3}{2}} \\ p_{4}-p_{1}^{\frac{1}{2}}-q_{1} \\ q_{1} & r_{4}^{\frac{1}{4}} \end{array}\right)$$

$$+ m_{f} \left(\sqrt{\alpha_{2}} e^{i\varphi_{2}} \right)^{q_{2}} - \sqrt{\alpha_{1}} e^{-i\varphi_{2}} \left(\sqrt{\alpha_{1}} e^{-i\varphi_{2}} \right)^{q_{2}} \left(\sqrt{\alpha_{1}} e^{-i\varphi_{2}} \right)^{q_{1}} + m_{f} \left(\sqrt{\alpha_{1}} e^{-i\varphi_{2}} \right)^{q_{2}} \left(\sqrt{\alpha_{1}} e^{-i\varphi_{2}} \right)^{q_{1}} + m_{f} \left(\sqrt{\alpha_{1}} e^{-i\varphi_{2}} \right)^{q_{2}} \left($$

A Second Massive Example: $f_1\bar{f}_2 \rightarrow W \rightarrow f_3\bar{f}_4h_5$

Backup Slides
Massless QCD

Massive Chirality Flow Massive Examples

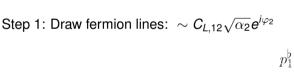
Lorentz Group Details

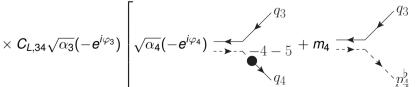
Spinor-hel detail

Chirality-Flow Motivation

UNIVERSITY

- W bosons simplifies ($C_R = 0$)
- Simplify with choices of $q_1, \dots q_5$
- $\bullet e^{i\varphi_i}\sqrt{\alpha_i} = \frac{m_i}{\langle \rho_i^\flat q_i \rangle} \ , \quad e^{-i\varphi_i}\sqrt{\alpha_i} = \frac{m_i}{[q_i \rho_i^\flat]}$
- Scalar has no flow line





Andrew Lifson Automating Chirality Flow 15th June 2022 6/10

A Second Massive Example: $f_1\bar{f}_2 \rightarrow W \rightarrow f_3\bar{f}_4h_5$

Backup Slide

Massless QCD

Massive Chirality Flow Massive Examples

Lorentz Group Details

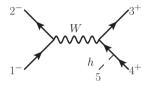
Spinor-hel details

Chirality-Flow Motivation

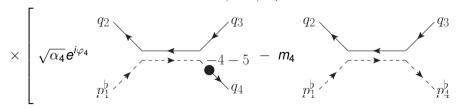
- W bosons simplifies ($C_R = 0$)
- Simplify with choices of $q_1, \dots q_5$

$$\bullet e^{i\varphi_i}\sqrt{\alpha_i} = \frac{m_i}{\langle \rho_i^\flat q_i \rangle} , \quad e^{-i\varphi_i}\sqrt{\alpha_i} = \frac{m_i}{[q_i \rho_i^\flat]}$$

Scalar has no flow line



Step 2: Flip arrows and connect: $C_{L,12}C_{L,34}\sqrt{\alpha_2\alpha_3}e^{i(\varphi_2+\varphi_3)}$



Lorentz Group Representations

Lorentz Group Details

UNIVERSITY

Lorentz group elements: $e^{i(\theta_i J_i + \eta_i K_i)}$ $J_i \equiv \text{rotations}, \quad K_i \equiv \text{boosts}$

- Lorentz group generators \simeq 2 copies of su(2) generators
 - $so(3,1)_{\mathbb{C}} \cong su(2) \oplus su(2)$

Group algebra defined by commutator relations

$$\begin{split} [J_i,J_j] &= i\epsilon_{ijk}J_k, \quad [J_i,K_j] = i\epsilon_{ijk}K_k, \quad [K_i,K_j] = -i\epsilon_{ijk}J_k \\ N_i^\pm &= \frac{1}{2}(J_i\pm iK_i) \;, \quad [N_i^-,N_j^+] = 0 \;, \\ [N_i^-,N_j^-] &= i\epsilon_{ijk}N_k^- \;, \qquad [N_i^+,N_j^+] = i\epsilon_{ijk}N_k^+ \end{split}$$
 Representations (i.e. realisations of N_i^\pm)

- - (0,0) scalar particles
 - $(\frac{1}{2},0)$ left-chiral and $(0,\frac{1}{2})$ right-chiral Weyl (2-component) spinors.
 - $(\frac{1}{2},0) \oplus (0,\frac{1}{2})$, Dirac (4-component) spinors.
 - $\left(\frac{1}{2},\frac{1}{2}\right)$ vectors, e.g. gauge bosons

How to Calculate? Spinor-Helicity

Backup Slides
Massless QCD

Massive Chirality Flow

Lorentz Group Details

Spinor-hel details

Chirality-Flow Motivation

Spinors (in chiral basis): $u^{+}(p) = v^{-}(p) = \begin{pmatrix} 0 \\ |p\rangle \end{pmatrix} \qquad u^{-}(p) = v^{+}(p) = \begin{pmatrix} |p| \\ 0 \end{pmatrix}$ $\bar{u}^{+}(p) = \bar{v}^{-}(p) = ([p| \quad 0) \qquad \bar{u}^{-}(p) = \bar{v}^{+}(p) = (0 \quad \langle p|)$

Give each particle a defined helicity ⇒ amplitude now a number!

 $\gamma^{\mu} = egin{pmatrix} 0 & \sqrt{2} au^{\mu} \ \sqrt{2}ar{ au}^{\mu} & 0 \end{pmatrix} \qquad \sqrt{2} au^{\mu} \ = (1,ec{\sigma}), \ \sqrt{2}ar{ au}^{\mu} = (1,-ec{\sigma}),$

■ Amplitude written in terms of Lorentz-invariant spinor inner products

$$\langle ij \rangle = -\langle ji \rangle \equiv \langle i||j \rangle$$
 and $[ij] = -[ji] \equiv [i||j]$

- These are well known complex numbers, $\langle ij \rangle \sim [ij] \sim \sqrt{2p_i \cdot p_i}$
- Remove $\tau/\bar{\tau}$ matrices in amplitude with

$$\langle i|\bar{\tau}^{\mu}|j][k|\tau_{\mu}|I\rangle = \langle il\rangle[kj], \qquad \langle i|\bar{\tau}^{\mu}|j] = [j|\tau^{\mu}|i\rangle$$

Define Problem

Massless QCD

Massive Chirality Flow

Massive Examples

Lorentz Group Details

Spinor-hel detail

Chirality-Flow Motivation

LUND

Kinematic part of amplitude slowed by spin and vector structures

- Can we still improve on this?
 - Deriving spinor inner products $\langle ij \rangle$, [kl] requires at least 2 steps
 - Re-write every object as spinors
 - Use Fierz identity $\bar{\tau}^{\mu}_{\alpha\dot{\beta}}\tau^{\dot{\alpha}\beta}_{\mu} = \delta^{\beta}_{\alpha}\delta^{\dot{\alpha}}_{\dot{\beta}}$
 - Not intuitive which inner products we obtain
- In SU(N) use graphical reps for calculations
 - E.g. using the colour-flow method
 - (Also birdtracks etc.)
- Spinor-helicity $\equiv su(2) \oplus su(2)$
 - Can we use graphical reps?

Creating Chirality Flow: Building Blocks

Massless QCD

Massive Chirality Flow Massive Examples

Lorentz Group Details

Spinor-hel detail

Chirality-Flow Motivation A flow is a directed line from one object to another su(2) objects have dotted indices and su(2) objects undotted indices

First step: Ansatz for spinor inner products (only possible Lorentz invariant)

$$\langle i|^{\alpha}|j\rangle_{\alpha} \equiv \langle ij\rangle = -\langle ji\rangle = i \longrightarrow j$$

 $[i|_{\dot{\beta}}|j]^{\dot{\beta}} \equiv [ij] = -[ji] = i \longrightarrow j$

Spinors and Kronecker deltas follow

$$\begin{aligned} \langle i|^{\alpha} &= \bigcirc \qquad \quad i \quad , & |j\rangle_{\alpha} &= \bigcirc \qquad \quad j \\ [i|_{\dot{\beta}} &= \bigcirc \cdots \qquad \quad i \quad , & |j]^{\dot{\beta}} &= \bigcirc \cdots \qquad \quad j \\ \delta_{\alpha}^{\ \beta} &\equiv \mathbb{1}_{\alpha}^{\ \beta} &= \stackrel{\alpha}{\longrightarrow} \qquad \stackrel{\beta}{\longrightarrow} \quad , & \delta_{\dot{\alpha}}^{\dot{\beta}} &\equiv \mathbb{1}_{\dot{\alpha}}^{\dot{\beta}} &= \stackrel{\dot{\beta}}{\longrightarrow} \cdots \stackrel{\dot{\alpha}}{\longrightarrow} \end{aligned}$$

