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Background
Nobel laureate Wolfgang Paul first showed, back in the 1950s, that charged particles
can be trapped using alternating electric fields1. Nowadays, this technique is commonly
referred to as Paul traps or radiofrequency traps (RF-traps) and is used in various areas
of modern physics. Two popular and exciting examples are particle accelerators and
quantum computes, which coincidentally are fields that often manage to spark an
interest among the general public. Moreover, even though there are a lot of exciting
fields within modern physics, they are seldom incorporated into the high school
classroom. The mechanical Paul trap can be used as a demonstration tool or an
experimental setup to simulate how a real Paul trap works or investigate interesting
physical phenomena2-5.

Different representations of a Paul trap
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A linear Paul trap (A) confines particles by connecting four metal rods to an AC source.
With opposite rods having the same polarity and changing their polarity with some
frequency, we create a net force towards the middle of the changing field.
Moving to a three-dimensional representation (B), the field strength is represented as
the height of the z-axis. Here, the repulsive force is shown as an uphill slope and the
attractive force as a downhill slope.
We can further reduce the abstract representation of the field by constructing a
macroscopic version of the Paul trap. The mechanical Paul trap (C) is visually similar to
the field strength in the linear Paul trap. Rotating the mechanical Paul trap is similar to
flipping the polarity of the charged rods.
The varying electric and gravitational potential are similar (see below), apart from a
cross-dependent sinusoidal term for the gravitational potential. This term shows that the
potential in the mechanical trap is bounded, which must be true for a solid surface.
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Visualizing the
threshold

Student investigations

There is a range of possible frequencies for
which it is possible to trap a ball. The lower
bound is called the threshold frequency. Use a
computer simulation and the mechanical Paul
trap to find the threshold frequency.

Threshold frequencies

1. Place a ball on the saddle surface using the
following rotational frequencies: 2.3 Hz and
3 Hz. Is it possible to catch the ball at any of
the frequencies?

2. Using a computer simulation, investigate if a
“ball” can be trapped using the following
rotational frequencies: 2.3 Hz, 3 Hz, and 9 Hz.
Have the particle start at x = 0 mm, y = 7 mm.

Varying frequency
Using the mechanical Paul trap, one can
intuitively understand the concept of saddle
points by trying to place a ball on the trap when
the trap is stationary.
What does it take for the ball not to roll off?
Why does the ball tend to roll off the surface?

Physical properties of a saddle point

Print the parts Program the
Arduino

Watch the trap
in action

Study the
simulation

Bring it home
Utilizing the power of 3D printers, cheap
electronic components, and easy to program
Arduino, you can create your own mechanical
Paul trap. Scan the QR codes to learn more.
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