FAIR and strong interaction matter in the universe

Achim Schwenk

Fysikdagarna, Lund, June 16, 2022

European Research Council Established by the European Commission

ERC AdG EUSTRONG

※

Bundesministerium für Bildung und Forschung

Gravity

Weak interaction

Electrodynamics

Strong interaction

Gravity

H Hydroger Nonmetal

Li Lithium 11 Na Sodium Alkali Met 19 К Potassium Alkali Metal 37 Rb Rubidium Alkali Me 55 Cs Cesium Alkali Metal 87 Fr Francium

Weak interaction

Electrodynamics

Periodic Table of Elements governed by electromagnetic interaction

:																
															2 He Helium Noble Gas	
4	United Nations International Year										9	10				
3e											F	Ne				
yllium											Fluorine	Neon				
Earth Metal											Halogen	Noble Gas				
12 /1g nesium Earth Metal			Education Cult	nal, Scien ural Orga	tific and nization	 of the of Che 	of the Periodic Table of Chemical Elements					14 Si Silicon Metalloid	15 P Phosphorus Nonmetal	16 S Sulfur Nonmetal	17 Cl Chlorine Halogen	18 Ar Argon Noble Gas
20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
C a	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Icium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
Earth Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Post-Transition Meta	Metalloid	Metalloid	Nonmetal	Halogen	Noble Gas
38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
Intium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon
Earth Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Post-Transition Metal	Post-Transition Metal	Metalloid	Metalloid	Halogen	Noble Gas
56	*	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
3a		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Irium		Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
Earth Metal		Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Post-Transition Metal	Rost-Transition Metal	Post-Transition Metal	Metalioid	Halogen	Noble Gas
88	**	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Ca		Rf	Db	Sg	Bh	HS	Mt	Ds	Rg	Cn	Nh	Fl	Mc	LV	Ts	Og
dium		Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Darmstadtium	Roentgenium	Copernicium	Nihonium	Flerovium	Moscovium	Livermorium	Tennessine	Oganesson
Earth Metal		Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Post-Transition Metal	Post-Transition Metal	Post-Transition Metal	Post-Transition Metal	Halogen	Noble Gas
	*	57 La Lanthanum Lanthanide	58 Ce Cerium Lanthanide	59 Pr Praseodymium Lanthanide	60 Nd Neodymium Lanthanide	61 Pm Promethium Lanthanide	62 Sm Samarium Lanthanide	63 Eu Europium Lanthanide	64 Gd Gadolinium Lantharide	65 Tb Terbium Lanthanide	66 Dy Dysprosium Lanthanide	67 HO Holmium Lanthanide	68 Er Erbium Lanthanide	69 Tm Thulium Lanthanide	70 Yb Ytterbium Lanthanide	71 Lu Lutetium Lanthanide
	**	89 Ac Actinium	90 Th Thorium Actinide	91 Pa Protactinium Actinide	92 U Uranium Actinide	93 Np Neptunium	94 Pu Plutonium Actinide	95 Am Americium Actiride	96 Cm Curium Actinide	97 Bk Berkelium Actinide	98 Cf Californium	99 Es Einsteinium Actinide	100 Fm Fermium Actinide	101 Md Mendelevium	102 No Nobelium	103 Lr Lawrencium

Gravity

Weak interaction

Electrodynamics

Strong interaction Quantum chromodynamics (QCD)

Gravity

Weak interaction

Electrodynamics

Strong interaction in the universe

doi:10.1038/nature11188

The limits of the nuclear landscape

Jochen Erler^{1,2}, Noah Birge¹, Markus Kortelainen^{1,2,3}, Witold Nazarewicz^{1,2,4}, Erik Olsen^{1,2}, Alexander M. Perhac¹ & Mario Stoitsov^{1,2}[‡]

doi:10.1038/nature11188

The limits of the nuclear landscape

Jochen Erler^{1,2}, Noah Birge¹, Markus Kortelainen^{1,2,3}, Witold Nazarewicz^{1,2,4}, Erik Olsen^{1,2}, Alexander M. Perhac¹ & Mario Stoitsov^{1,2}[‡]

doi:10.1038/nature11188

The limits of the nuclear landscape

Jochen Erler^{1,2}, Noah Birge¹, Markus Kortelainen^{1,2,3}, Witold Nazarewicz^{1,2,4}, Erik Olsen^{1,2}, Alexander M. Perhac¹ & Mario Stoitsov^{1,2}[‡]

doi:10.1038/nature11188

The limits of the nuclear landscape

Jochen Erler^{1,2}, Noah Birge¹, Markus Kortelainen^{1,2,3}, Witold Nazarewicz^{1,2,4}, Erik Olsen^{1,2}, Alexander M. Perhac¹ & Mario Stoitsov^{1,2}[‡]

doi:10.1038/nature11188

The limits of the nuclear landscape

Jochen Erler^{1,2}, Noah Birge¹, Markus Kortelainen^{1,2,3}, Witold Nazarewicz^{1,2,4}, Erik Olsen^{1,2}, Alexander M. Perhac¹ & Mario Stoitsov^{1,2}[‡]

doi:10.1038/nature11188

t : 0.00e+00 s / T : 10.96 GK / ρ_b : 8.71e+12 g/cm³

from Watts et al., RMP (2016) NASA/Goddard/LIGO/Virgo

Multi-messenger era: neutron star merger GW170817 gravitational wave signal: provides constraints on neutron star radii

short gamma-ray burst + kilonova light curve: decay of r-process nuclei

from Watts et al., RMP (2016) NASA/Goddard/LIGO/Virgo

from Watts et al., RMP (2016)

NASA/Goddard/LIGO/Virgo

GSI and FAIR – The Facility

slides from Giubellino/Leifels @ 2021 KHuK meeting

PANDA

hadron structure and dynamics

PANDA physics case

- Gluonic excitations
 - Hybrids, glueballs
- Charmonium states
 - Precision spectroscopy
- Time-like
 - Form factors, nucleon structure
- In medium mass modifications
 - Extension to the charm sector
- Extension of nuclear chart
 - Double hypernuclei
- And much more...

Strong involvement from Sweden (Lund, KTH, U Stockholm, Uppsala)

Production and decay of hyperons in HADES using PANDA technology: 4 week physics run in March 2022

Compressed Baryonic Matter

heavy-ion collisions to create matter at high baryon densities explore QCD phase diagram and properties of dense matter

NUSTAR

NUSTAR: reactions and halo nuclei

Strong involvement from Sweden in NUSTAR (Chalmers, Lund, KTH, U Stockholm)

2n halos: ¹¹Li=⁹Li+n+n,... in light nuclei only known examples of Borromean states in nature

unveiling two-proton halo-nucleus ¹⁷Ne using proton knock-out reactions one proton halo 10 Lehr et al., PLB (2022) (Chalmers) two proton halo

R3B with CALIFA

¹¹Be

NUSTAR

nuclear structure and

nuclear astrophysics

NUSTAR: heavy and superheavy elements

high-resolution α -photon nuclear spectroscopy of superheavy decay chains:

TASISpec+

island of stability not at Z=114 Såmark-Roth et al., PRL (2021) (LUND)

Future FAIR: heavy + neutron-rich

towards the r-process waiting points at the N=126 shell closure

Calculated shell stabilization energy (Sobiczewski *et al.*) Colored boxes: known nuclei

Hierarchy of degrees of freedom

Emergent phenomena:

Protons and neutrons from QCD

Nuclear forces

Nuclear structure

Large scattering length (universal) physics

Can we describe these phenomena quantitatively with theoretical uncertainties?

Can we connect each level in the tower back to QCD?

Hierarchy of degrees of freedom

Tower of effective field theories

Chiral EFT: nucleons, pions

Pionless EFT: nucleons only (low-energy few-body) or nucleons + clusters (halo EFT)

EFT for heavy nuclei: collective degrees of freedom

EFT at Fermi surface: Fermi liquid theory, superconductivity

EFT for nuclear DFT? densities as degrees of freedom

Chiral effective field theory for nuclear forces

Systematic expansion (power counting) in low momenta $(Q/\Lambda_b)^n$

Weinberg (1990,91)

based on symmetries of strong interaction (QCD)

long-range interactions governed by pion exchanges

Chiral effective field theory for nuclear forces Systematic expansion (power counting) in low momenta $(Q/\Lambda_b)^n$ NN 3N 4NLO $\mathcal{O}\left(\frac{Q^0}{\Lambda^0}\right)$ powerful approach for many-body interactions NLO $\mathcal{O}\left(\frac{Q^2}{\Lambda^2}\right)$ π π π c_1, c_3, c_4 c_E c_D only 2 new couplings at N²LO N²LO $\mathcal{O}\left(\frac{Q^3}{\Lambda^3}\right)$ all 3- and 4-neutron forces derived in (1994/2002) predicted to N³LO N³LO $\mathcal{O}\left(\frac{Q^4}{\Lambda^4}\right)$ + ... (2011) ... (2006) ...

Weinberg, van Kolck (1992-1994), Kaplan, Savage, Wise, Bernard, Epelbaum, Kaiser, Meissner,...

Chiral effective field theory for nuclear forces Systematic expansion (power counting) in low momenta $(Q/\Lambda_b)^n$

IOP Publishing

Journal of Physics G: Nuclear and Particle Physics

J. Phys. G: Nucl. Part. Phys. 42 (2015) 034028 (20pp)

doi:10.1088/0954-3899/42/3/034028

A recipe for EFT uncertainty quantification in nuclear physics

R J Furnstahl¹, D R Phillips² and S Wesolowski¹

Bayesian uncertainty estimates and model checking

Furnstahl, Phillips, Klos, Wesolowski, Melendez (2015-)

Great progress in ab initio calculations of nuclei

figures from Hergert

Great progress in ab initio calculations of nuclei

Nuclear landscape based on a chiral NN+3N interaction

ab initio is advancing to global theories, limitations due to input NN+3N

Nuclear landscape based on a chiral NN+3N interaction

ab initio is advancing to global theories, limitations due to input NN+3N

First ab initio calculations of ²⁰⁸Pb

Hu, Jiang, Miyagi et al. [Chalmers, ORNL, TRIUMF], arXiv:2112.01125 enabled by 3N advances

statistical methods via history matching to explore uncertainties in NN+3N

predicted **neutron skin of ²⁰⁸Pb** agrees with most experiments!

Extreme matter in neutron stars

governed by the same strong interactions

Watts et al., RMP (2016)

Chiral EFT calculations of neutron matter

good agreement up to saturation density for neutron matter different NN+3N interactions and different many-body methods

slope determines pressure of neutron matter

from Huth, Wellenhofer, AS, PRC (2020)

updated 4 April 2016

Neutron star masses from Jim Lattimer

three 2 M_{sun} neutron stars obs. Demorest et al, Nature (2010), Antoniadis et al., Science (2013), $2.08 \pm 0.07 \text{ M}_{\text{sun}}$ Fonseca et al. (2021)

Why are neutron stars stable?

due to their mass, stars would undergo gravitational collapse

stabilized by the pressure of matter they consist of: equation of state \rightarrow hydrostatic equilibrium

For neutrons: pressure of Fermi gas plus strong interactions

Impact on neutron stars Hebeler, Lattimer, Pethick, AS, PRL (2010), ApJ (2013) constrain high-density EOS by causality, require to support 2 M_{sun} star

predicts neutron star radius: 9.7 - 13.9 km for M=1.4 M_{sun} 1.8 - 4.4 n_0 modest central densities

speed of sound needs to exceed 1/3 c² to get 2 M_{sun} stars Greif et al., ApJ (2020)

Neutron star radius from GW170817 chiral EFT + general EOS extrapolation: 9.7 - 13.9 km for M=1.4 M_{sun}

NICER results

Neutron star radius from pulse profile modeling

J0030 and J0740 here: Amsterdam analysis Riley et al., ApJL (2019), (2021)

similar results from Illinois-Maryland analysis Miller et al., ApJL (2019), (2021)

Combined merger and NICER constraints

Constraints from heavy-ion collisions Huth, Pang et al., Nature (2022)

Bayesian multi-messenger framework using EOS draws

based on chiral EFT

Constraints from heavy-ion collisions Huth, Pang et al., Nature (2022)

include constraints from heavy-ion collision experiments ASY-EOS and FOPI at GSI for neutron and symmetric matter

Constraints from heavy-ion collisions Huth, Pang et al., Nature (2022)

inclusion of HIC constraints prefers higher pressures, similar to NICER, overall remarkable consistency with chiral EFT and astro constraints

Exciting era in strong interaction physics

Effective field theory of strong interaction + powerful many-body theory

New experimental frontiers

New observations in astrophysics

Thanks to our group and collaborators!

