X-ray spectroscopy in the service of catalysis for renewable chemicals and fuels

SARA BLOMBERG | DEPT CHEMICAL ENGINEERING | LUND UNIVERSITY

Outline

- *Operando* experiments using XPS
- *Lignin* a potential renewable feedstock
- In situ characterization of industrial NiMo catalyst
- Nanoparticles as model system
- Conclusions

What is a catalyst?

- Swedish chemist Jöns Jakob Berzelius
- A substance that modify the reaction rate of a chemical process without being consumed.
- Powerplants, industries and cars.

Jöns Jakob Berzelius 1779-1848

CO oxidation on simplified model systems

Ex situ vs *In situ* Studies

X-ray Photoelectron Spectroscopy

Surface sensitive and chemical information

CO oxidation over Pd(100) < 1 mbar

UNIVERSITY

"In Situ X-Ray Photoelectron Spectroscopy of Model Catalysts: At the Edge of the Gap" S. Blomberg et al, Phys. Rev. Lett. **110** 117601 (2013)

Laser-induced Fluorescence

Common technique used in combustion physics

Probe the flame with laser to achieve information about the chemical composition.

CO oxidation over Pd(100), detecting CO_2

POLARIS endstation P22, DESY

Tot gas flow : 3.5-5 l/min - 1bar

"A high-pressure x-ray photoelectron spectroscopy instrument for studies of industrially relevant catalytic reactions at pressures of several bars" P. Amann et al, Rev Sci Instrum, 90 (2019)

"Bridging the Pressure Gap in CO Oxidation" S.Blomberg et al, ACS Catalysis, **11**, (2021)

CO oxidation Pd(100) @1 bar

• 1:1 CO:O₂ - 6% CO and O₂ each in He, tot flow 5.18 l/min with

Pressure dependent light off

LUND UNIVERSITY

Szanyi, J.; Goodman, D. W., Co Oxidation on Palladium .1. A Combined Kinetic-Infrared Reflection-Absorption Spectroscopic Study of Pd(100).reactivity of different Pd-O species in CO oxidation. Phys Chem Chem J Phys Chem-Us 1994, 98 (11), 2972-2977 Phys 2007, 9 (4), 533-540.

From meter to nanometer and back

Transition to sustainable aviation fuel

Renewable feedstock

wood

crops

- Transition from fossil feedstock to renewable feedstock is urgent!
- Net-zero carbon emissions from air transport industry by 2050.
- Competence centre CESTAP sustainable aviation biofuel

Valorization of lignin, a byproduct from papermills

Hydrotreatment of lignin

Chemical reactions

Characterization of Alumina supported NiMo

STEM

STEM / EDX

Wt% on δ -Al₂O₃

Simplified systems

UHV

APXPS In situ reduction –1 mbar H₂

Foil as model for an industrial catalysts

APXPS In situ reduction –1 mbar H₂

Foil vs supported catalyst

Design model system

Ni (atomic %)	Mo (atomic %)
66	34
29	71

Nanoparticles from spark ablation

"Bimetallic nanoparticles as a model system for an industrial NiMo catalyst" S. Blomberg et al, Materials. 12 3727 (2019)

In situ 140 mbar reduction

Beamline P22 POLARIS

NiMoO₄

From complex to simplified systems

Combine Imaging and Spectroscopy

TEM

X-ray spectroscopy

LUNDS

UNIVERSITET

Acknowledgements

Division of Combustion Physics

- Sabrina Gericke
- Johan Zetterberg

Division of Solid State Physics

- Marie Bermeo Vargas
- Maria Messing

Stockholm University and DESY

- Patrick Lömker
- Mikhail Shipilin
- Christopher Goodwin
- Peter Amann
- Anders Nilsson

Dept Chemical Engineering

- Tove Kristensen
- Christian Hulteberg

Div Synchrotron Radiation Research

- Edvin Lundgren
- Johan Gustafson
 MAX IV
- Andrey Shavorskiy
- Robert Temperton
- Mattia Scardamaglia
- Suyun Zhu
- Esko Kokkonen

Dept Chemistry

- Martin EK
- Jonas Nordlander
- David Wahlqvist

Malmö University

- Dorotea Gajdek
- Lindsay Merte

Brookhaven National Laboratory

Tianhao Hu

•

Ashley Head

Vetenskapsrådet

The Crafoord Foundation Thank you for your attention!

LUNDS UNIVERSITET