

UNIVERSITET

Bio-medical imaging using synchrotron radiation

MARTIN.BECH@MED.LU.SE MEDICAL RADIATION PHYSICS

SIGI

Outline

- » What is phase contrast imaging and dark-field imaging?
- » Why are these new imaging modalities good for biomedical imaging?
- » Future prospects of phase-contrast imaging?

Biology can best be understood if studied at different length and time scales

High Contrast / Low Contrast

First x-ray image made by Röntgen in 1896

Modern x-ray image today

Synchrotron-based phase contrast micro-CT Electron accelerator, highly parallel X-rays

Medicine at different length scales

Phase contrast and dark-field imaging

Analogy – Visible Light

- » Diffraction
- » Refraction

Analogy – Visible Light

Images by Gary S. Settles, Penn State Gas Dynamics Lab

Phase contrast imaging

Röntgen was also looking for refraction...

W.C. RONTGEN UBER EINE NEUE ART VON STRAHLEN

Bild 5. Prismen aus Hartgummi und Aluminium und Hohlprisma aus Glimmerplättchen wurden auf die horizontale Bleiplatte von Bild 4 gesetzt; etwaige Ablenkung der Strahlen hätte auf diese Weise erkennbar werden müssen (vgl. Abschnitt 7).

RICHTE GESELLSCHAFT ZU WURZBURG D JAHRGANG 1896, S. 10

TGEN haft die erste mitteilung ten strahlen vor

UCK HRIGEN BESTEHENS MEDIZINISCHEN U WURZBURG

A.v. KOLLIKER · F. RINECKER · J. SCHERER · R. VIRCHOW UND ANDEREN

Coherence

» Ability to interfere due to particle/wave duality

NIVERSITY

Near-field versus far-field

Wave propagation for beginners

Fc	or $\lambda = 10^{-10}$ m		а	Z
-	Contact regime	F >> 1	1 mm	10 cm
-	Near field regime (Fresnel)	F~1	1 µm	10 cm
-	Far field regime (Fraunhofer)	F << 1	1 nm	10 cm
-	Near field regime (Fresnel)	F~1	1 mm	10 km
-	Near field regime (Fresnel)	F~1	1 µm	10 cm
-	Near field regime (Fresnel)	F~1	1 Å	1 Å

Holotomography

Outline

- » What is phase contrast imaging and dark-field imaging?
- » Why are these new imaging modalities good for biomedical imaging?
- » Future prospects of phase-contrast imaging?

Selected Application

3D IMAGING BY NANO HOLOTOMOGRAPHY

Zoom tomography of biopsies from human peripheral nerves

PIN biopsy method

Diabetic Neuropathy – nerve fiber distribution

Posterior interosseous nerve – upper extremity

Nano tomography @ synchrotron

Myelinated mouse nerves studied by X-ray phase contrast zoom tomography

M. Bartels^a, M. Krenkel^a, P. Cloetens^b, W. Möbius^{c,d}, T. Salditt^{a,d,*}

^aInstitut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany

^bESRF – The European Synchrotron, 38043 Grenoble, France

^c Max-Planck-Institut für Exp. Medizin, Hermann-Rein-Straße 3, 37075 Göttingen, Germany

d Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany

Journal of Structural Biology 192 (2015) 561-568

Synchrotron Nano CT versus 3D Electron microscopy

Technique	Resolution	Field of View	Acquisition Time	Other
Synchrotron Imaging	75 nm	~150 µm	Hours	Non destructive
3D Electron microscopy	In plane: ~ 5-20 nm Slice-wise: ~ 50+ nm	 Abdollahzadeh et al. 2019 ~15 x 15 x 15 μm³ Lee et al. 2019 48 x 36 x 20 μm³ 	Days	Destructive Artifacts in different slices Need for alignment of 2D images

Nano-Tomography at ID-16NI, ESRF

Three-dimensional architecture of human diabetic peripheral nerves revealed by X-ray phase contrast holographic nanotomography

L.B. Dahlin^{1,2}, K.R. Rix³, V.A. Dahl⁴, A.B. Dahl⁴, J.N. Jensen⁴, P. Cloetens⁵, A. Pacureanu⁵, S. Mohseni⁶, N.O.B. Thomsen², <u>M. Bech¹</u>

Affiliation: ¹Lund University, Lund, Sweden; ²Skåne University Hospital, Malmö, Sweden; ³Copenhagen University, Blegdamsvej 17, 2100 Copenhagen, Denmark; ⁴Technical University of Denmark, Lyngby, Denmark; ⁵ESRF, Grenoble, France; ⁶Linköping University, Linköping, Sweden; **martin.bech@med.lu.se**

> Scientific Reports (2020) 10:7592 https://doi.org/10.1038/s41598-020-64430-5

X-ray phase contrast zoom tomography

Node of Ranvier

Node of Ranvier – myelinated nerve fiber with myelin deleted

Regeneration – the birth of an axon

Slice number 320

Slice number 450

Slice number 280

Slice number 385

Slice number 490

Data segmentation

» Extraction of both inner and outer surface

Dahl, V. A., Trinderup, C. H., Emerson, M. J., & Dahl, A. B. (2018) Contentbased Propagation of User Markings for Interactive Segmentation of Patterned Images. IEEE Transactions on Image Processing. 2018

> Data analysis by Hans Martin Kjer

Morphology: Axonal diameter

Data analysis by Hans Martin Kjer, DTU

Quantitative data extraction

Data: Hand Nerve Biopsies, ESRF, Lars Dahlin et al.

Data ID	#Fiber	#Node of Ranvier	Axonal volume [mm ³] X10 ⁻³	Myelin volume [mm ³] X10 ⁻³	Length of fibers tracked [mm]
NT32	246	45	1.29	2.97	54.75
NT45	240	28	1.2	2.84	55.13
NT46 [#]	380	58	1.9	4.5	87.33
NT53 [#]	447	90	1.56	5.3	101.96
NT2	188	84	1.36	2.42	50.28
NT14	186	47	0.92	2.02	40.79
NT16	130	30	0.59	1.43	31.59
NT23	245	57	1.03	2.42	58.26
NT132	158	20	0.23	0.76	28.86
NT5	308	63	1.9	2.76	65.86
NT18	162	37	0.89	2.19	37.87
Sum:	2690	559	12.87	29.61	612.89

Outline

- » What is phase contrast imaging and dark-field imaging?
- » Why are these new imaging modalities good for biomedical imaging?
- » Future prospects of synchrotron phase-contrast imaging?

Outlook: Bio-medical Imaging and pre-clinical implementation

Bio-imaging at different length scales

Nano/Micro tomography Protein crystallography Coherent diffractive imaging 10^{-10} m 10⁻⁹ m 10⁻⁶ m Biomolecules Molecular Cells Animals **Atoms** Micro-Tissues Organs complexes structures

Slide courtesy: Tomas Lundqvist

MedMAX – for biomedical imaging

JNIVERSITY

Technical scope for Biomedical beamline, MedMAX

36

Chapter 3. Technical solutions

Specifications	nanotomo	microtomo	in-vivo tomo
Distance from source [m]	135	150	165
X-ray energy	12,24,36 keV	12-40 keV	20-40 keV
Beam size at sample	0.05-0.2 mm	1-2 mm	20-50 mm
Beam modes	Focused	Parallel	Expanded
X-ray bandwidth	$10^{-4} - 10^{-2}$	10^{-2}	$10^{-4} - 10^{-2}$
Flux at sample @25keV [ph/s]	$10^{12} - 10^{13}$	$5x10^{15}$	$10^{13} - 10^{14}$
3D spatial resolution	100-300 nm	1-2 μm	5-30 μm
Trademarks	nano-scale phase to-	fast ex-vivo and	in-vivo imaging of
	mography and spec-	in-vivo micrometer	whole organs in
	troscopy of cells,	scale imaging of	small animals, low-
	bacteria and bio-	tissues and selected	dose longitudinal
	logic material	organ regions.	studies

Table 3.1: The design goals in terms of beam parameters at the sample position and instrument performance

Conceptual design report

Imaging with synchrotron x-rays

UNIVERSITY

Truong et al. (2022) Sub-micrometer morphology of human atherosclerotic plaque revealed by synchrotron radiation based μ CT—A comparison with histology. PLOS ONE 17(4): e0265598.

Thank you for your attention

- » Lund University
- » Region Skåne
- » Medicon village

LUND UNIVERSITY