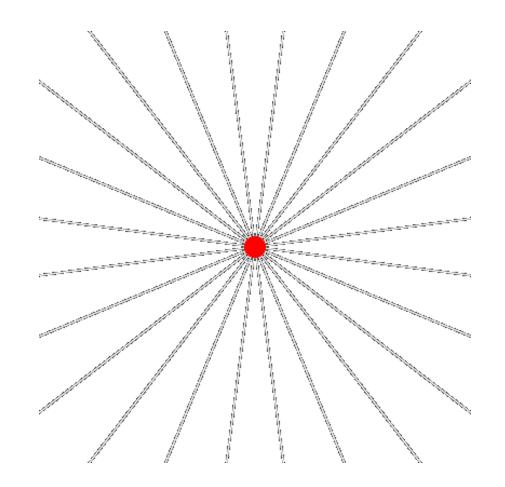
MAX-IV Synchrotron Facility

Dr Stephen Molloy, Head of Accelerator Operations, MAX-IV

This is a presentation of the work

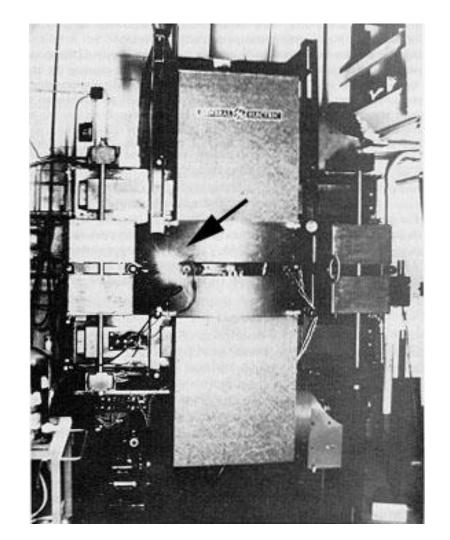
of many people over many years.

All credit should go to them.

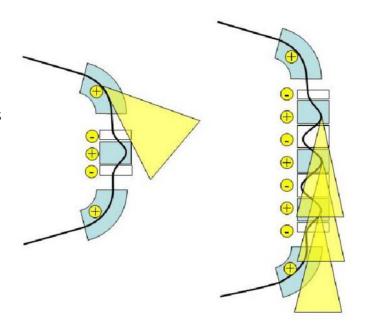

Any mistakes are mine.

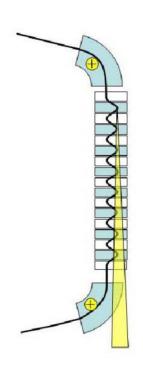
source?

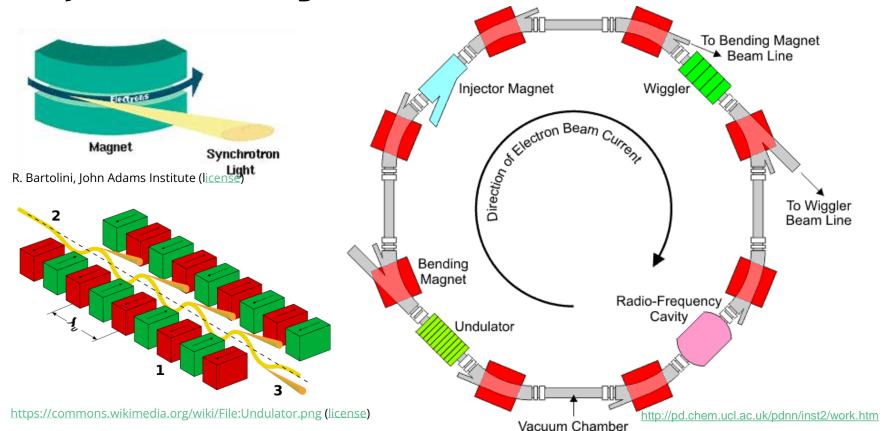
What is a synchrotron light


Some electromagnetism

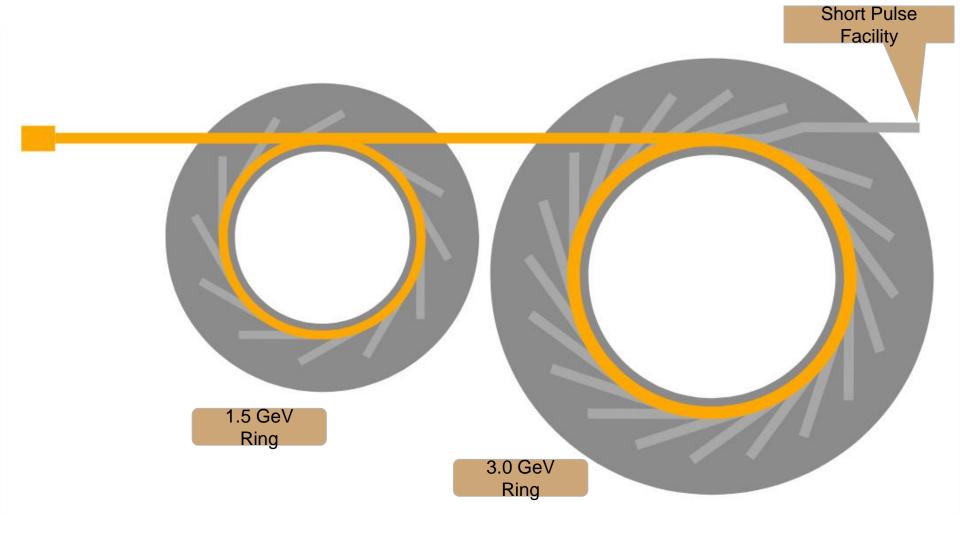
- E-field around a charge is disrupted by acceleration
- This disruption moves at c, and is observed as a flash of light


Some electromagnetism


- E-field around a charge is disrupted by acceleration
- This disruption moves at c, and is observed as a flash of light
- 24th April, 1947, (almost exactly 75 years ago) this light was first observed in the GE 70 MeV synchrotron
 - Initially thought to be arcing, they soon realised they were observing direct emission from orbiting electrons


Some electromagnetism

- E-field around a charge is disrupted by acceleration
- This disruption moves at c, and is observed as a flash of light
- 24th April, 1947, (almost exactly 75 years ago) this light was first observed in the GE 70 MeV synchrotron
 - Initially thought to be arcing, they soon realised they were observing direct emission from orbiting electrons
- First taken advantage of as a side-effect of such accelerators, before machines dedicated to light generation were built
 - o Dipole, wiggler, and undulator light



Synchrotron Light Sources

An example beamline – BLOCH

Four different gratings can be

Apple II type quasi-periodic undulator

A toroidal mirror M1 focuses the beam horizontally on to the exit slit and collimates it vertically.

Plane mirror M2 or M2_{NIM} directs the beam on to the grating

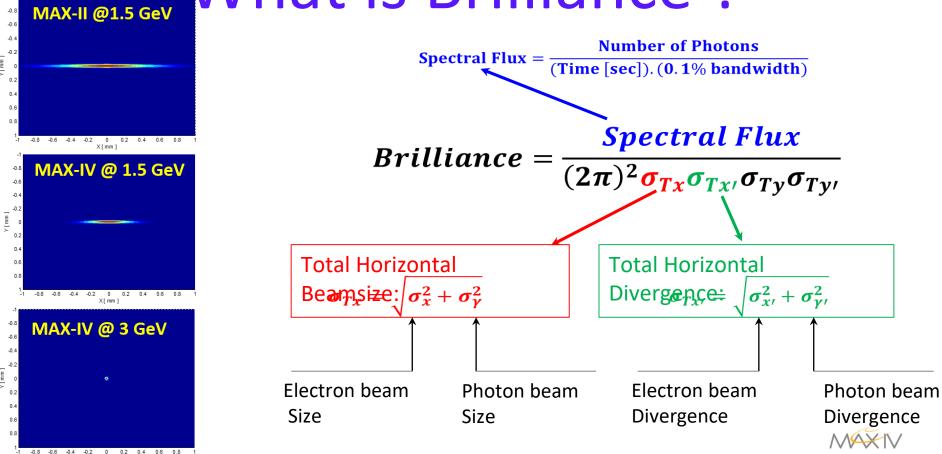
used

A cylindrical mirror $M3_A$ or $M3_B$ selects an endstation, and focuses the beam vertically on to the exit slit

Exit slit

An ellipsoidal mirror $M4_A$ or $M4_B$ focuses the beam on to the sample.

Arpes


Spin-Arpes

MAX-IV's 3 GeV Ring is the most brilliant in the world...

...But what does that mean?


...And how was that done?

What is Brilliance?

Brilliance @ MAX IV

So, brilliance is a result of the phase-space of the photon & e- beams.

What control do we have over this?

Photon beam emittance

$$arepsilon_{\gamma}=rac{\lambda}{2\pi}$$

- Very simple → the diffraction limit of EM radiation at that wavelength
- All beamlines have different demands, but a typical number at MAX-IV might be:
 - $\circ \ \ arepsilon_{\gamma}=20 \ pm. \ rad$
- Note that this value is set by the needs of the users, and therefore not controllable

Electron beam emittance

- A balance between two processes:
 - Damping due to particle acceleration
 - Excitation due to the quantum nature of synchrotron emission

That is, the e-emittance is a function of the magnetic fields in the accelerator

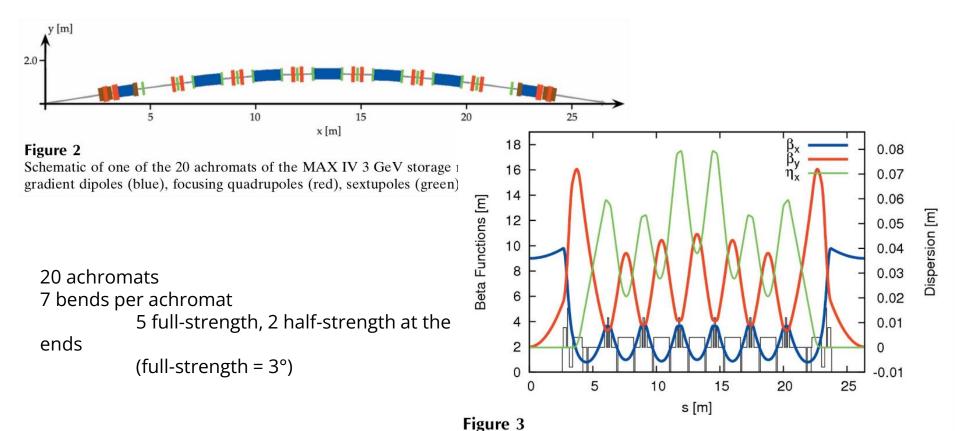
- Therefore, this can be optimised through the design of the machine

29 November 1993

Dieter Einfeld, Mark Plesko

"Design of a diffraction limited light source"

International Symposium on Optics, Imaging, and Instrumentation

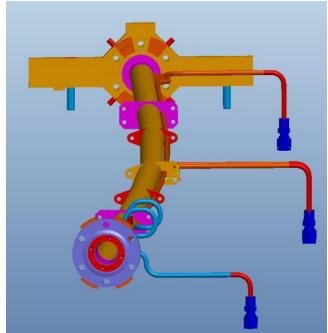

Key insight from that paper

- Imagine you had a God-like ability to optimise the field strengths in an accelerator
 - o For any accelerator, you could find the fields that minimise the emittance
- In this case, the emittance goes as:

$$arepsilon = C rac{E^2}{N_d^3}$$

 More bending magnets, with softer bends, have a *cubic* effect on the beam emittance

Multi-Bend Achromat at MAX-IV


 β functions and dispersion for one achromat of the MAX IV 3 GeV storage ring. Magnet positions are indicated at the bottom.

MAX-IV Engineering Issues

100 MHz accelerating RF

Circular, Cu, NEG-coated vacuum chambers

Compact magnet design

- 300 mA e- stored during delivery to users
 - 500 mA demonstrated
- Emittances:
 - \circ $\varepsilon_x = 320 \pm 18 \text{ pm.rad}$
 - \circ ε_{v} = 6.5 ± 0.1 pm.rad
- e- beam position stability (integrated to 5 kHz)
 - <2% of beam size horizontally</p>
 - <5% of beam size vertically</p>

X-ray brightness (over all wavelengths)

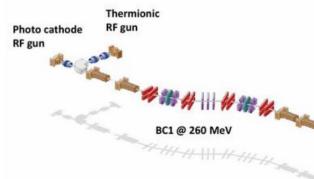
- 300 mA e- stored during delivery to users
 - 500 mA demonstrated
- Emittances:
 - \circ $\varepsilon_x = 320 \pm 18 \text{ pm.rad}$
 - \circ ε_{v} = 6.5 ± 0.1 pm.rad
- e- beam position stability (integrated to 5 kHz)
 - <2% of beam size horizontally</p>
 - <5% of beam size vertically
 </p>

X-ray brightness (over all wavelengths)

- 300 mA e- stored during delivery to users
 - 500 mA demonstrated
- Emittances:
 - \circ $\varepsilon_x = 320 \pm 18 \text{ pm.rad}$
 - \circ $\varepsilon_{\rm v}$ = 6.5 ± 0.1 pm.rad

Spectral purity and apparent source-size (diffraction limited in many cases)

- e- beam position stability (integrated to 5 kHz)
 - <2% of beam size horizontally</p>
 - <5% of beam size vertically</p>


X-ray brightness (over all wavelengths)

- 300 mA e- stored during delivery to users
 - 500 mA demonstrated
- Emittances:
 - \circ $\varepsilon_x = 320 \pm 18 \text{ pm.rad}$
 - \circ $\varepsilon_{\rm v}$ = 6.5 ± 0.1 pm.rad
- e- beam position stability (integrated to 5 kHz)
 - <2% of beam size horizontally</p>
 - <5% of beam size vertically</p>

Spectral purity and apparent source-size (diffraction limited in many cases)

Stability of apparent source location

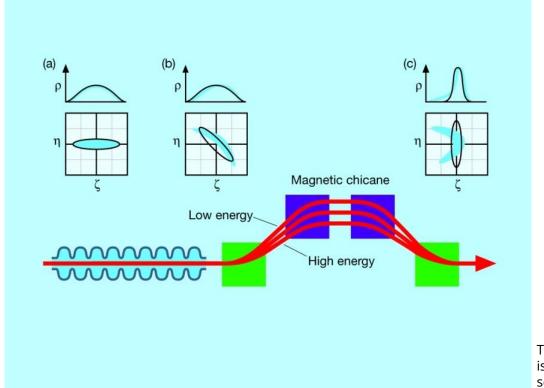
Short pulse facility (SPF)

MAX IV linac overview

BC2 @ 3 GeV

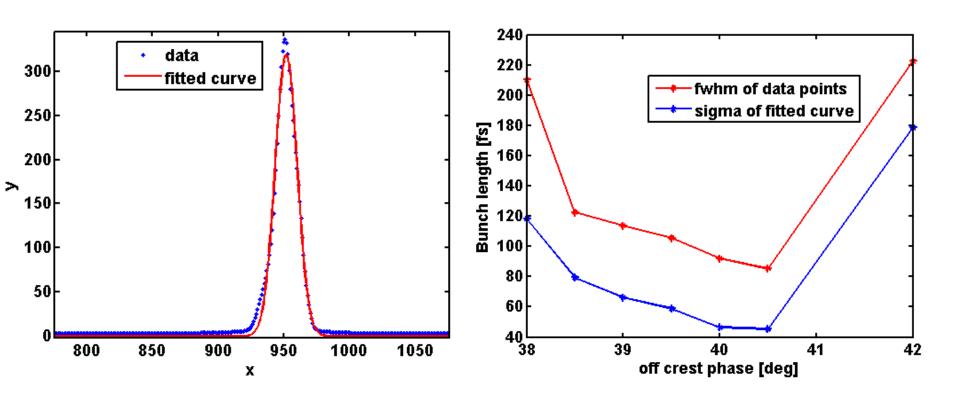
Extraction
1.5 GeV

Extraction
3 GeV


Full energy injection and top up operation for the two storage rings

Energy	1.5 GeV/ 3GeV
Injection frequency	10 Hz
Charge	0.6-1 nC/shot
Emittance	10 mm mrad
Energy spread	<0.2%

High brightness driver for the Short Pulse Facility


Energy	3GeV
Injection frequency	100 Hz
Charge	100 pC
Bunch length	100 fs
Emittance	1 mm mrad
Energy spread	<0.4%

Bunch compression in a linac

The compression scheme in SPF is somewhat different, but this serves to illustrate the main concept

Achieved at SPF

Pump-probe experiments

- Such short pulses can capture fast processes in intermediate stages
- One technique,
 - o "Pump" a sample with a high power laser, then "probe" it with the X-ray pulse
 - Sweep the time-delay between pump & probe to watch the reaction of the sample evolve
- For example,
 - Observe non-thermal melting
 - Lattice parameter changes and then breaks down as the crystal evolves to liquid state

Looking to the future

Continue to lead the way

- The range of impressive new synchrotrons coming online now share something in common – the MAX-IV MBA concept
- Our plan is to continue to lead for the foreseeable future
- 3 GeV ring:
 - Ultralong bunches
 - Dramatic improvement in brightness
 - Diffraction limit for high energy photons

- 1.5 GeV ring:
 - Transparent top-up
 - Pseudo single-bunch
 - Alternative timing modes
- SPF
 - Ultrashort bunches
 - Low jitter
 - Soft X-ray FEL
 - Hard X-ray FEL

Conclusion

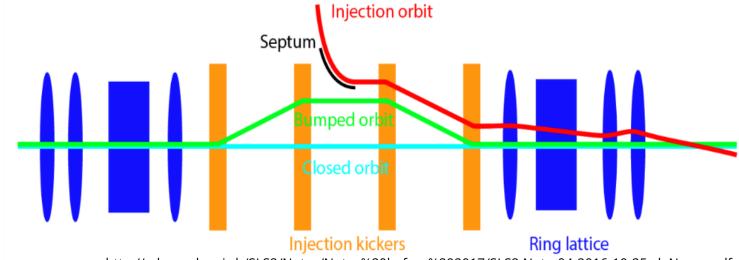
- The MAX-IV accelerators can satisfy a wide range of X-ray users
 - Hard X-rays, soft X-rays
 - Imaging, scattering, diffraction, spectroscopy, time-resolved, ...
 - Impossible to do justice to the range of research possibilities
 - Including the advances in accelerator physics/engineering
- The MBA concept has been successfully demonstrated
 - Inspired multiple upgrade programs at light sources around the world
- Much to look forward to in the future!

Thanks!

Backup Material

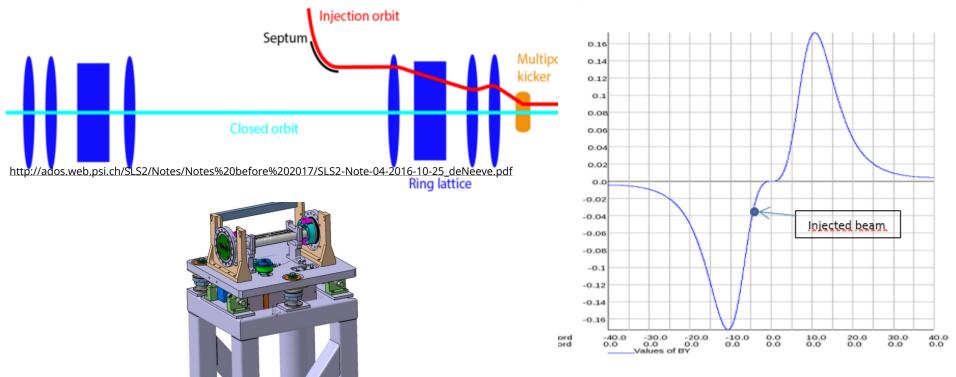
Some terminology

- Particle dynamics in accelerators is done in the Hamiltonian formalism
 - Phase space ⇒ Position and conjugate momentum $H=rac{1}{2}p_x^2+rac{1}{2}p_y^2+rac{1}{2}rac{\delta^2}{eta_o^2\gamma_o^2}$
- This is quite different from High Energy Physics, which typically uses the Lagrangian formalism
 - \circ Phase space \Rightarrow Position and velocity $L=\frac{1}{2}m\dot{x}^2-\frac{1}{2}m\omega^2x^2$
- **Emittance** ⇒ The area of the Hamiltonian phase space occupied by the beam in one plane (x, y, or longitudinally)
 - Units: pm.rad
 - A beam with a lower emittance is said to be "colder"
 - Beam size goes with the square root of the emittance
 - Smaller emittance (colder beam) is better

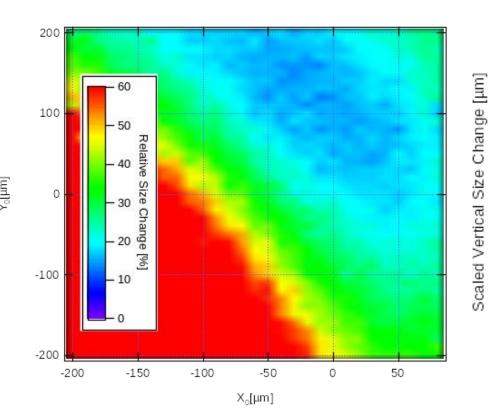

Some more terminology

- Achromat:
 - Sequence of magnets whose effect is independent of particle energy
 - A pure dipole is *not* achromatic
 - A sequence of dipoles and quadrupoles might be
- Twiss parameters:
 - A set of functions that describe the envelope of the beam's size and divergence
 - α, β, γ
 - lacksquare Beam size; $\sigma = \sqrt{arepsiloneta}$
- Dispersion:
 - A function describing the path of an off-energy particle
 - η

Key point from Einfeld & Plesko


- Natural emittance determined almost solely in the magnetic bends
 - That is, not in the straight sections where undulators are installed
- The emittance goes linearly with *H* averaged over the bending magnets
 - $_{\circ}~H=\gamma\eta^{2}+\overline{2}lpha\eta\eta^{\prime}+eta\eta^{\prime2}$
- H is minimised by designing η to have a minimum in the bending magnets
- Real-world criteria forbid this
- Instead, split large magnets into many smaller ones, and satisfy the constraint in most of them
 - Reduce the bending angle of those where the constraint is broken to reduce their impact on *H*.

Injection is always disruptive to the stored beam


http://ados.web.psi.ch/SLS2/Notes/Notes%20before%202017/SLS2-Note-04-2016-10-25_deNeeve.pdf

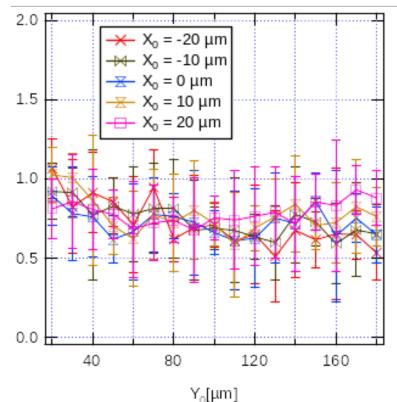
Multipole Injection Kicker (MIK)

Joint project with SOLEIL, based on concept from BESSY

MIK Performance

ELSEVIED

Nuclear Inst. and Methods in Physics Research, A


journal homepage: www.elsevier.com/locate/nima

Transparent top-up injection into a fourth-generation storage ring

Patrick Alexandre ^a, Rachid Ben El Fekih ^a, Antoine Letrésor ^a, Serge Thoraud ^a, José da Silva Castro ^a, François Bouvet ^a, Jonas Breunlin ^b, Åke Andersson ^b, Pedro Fernandes Tavares ^b, ^a

^a Synchrotron SOLEIL, Saint Aubin 91192 Gif-sur-Yvette, France ^b MAX IV Laboratory, Lund University SE22100, Lund, Sweden

