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Ultrarelativistic heavy ion collisions & heavy quarks, why?

Figure: Fig: Chun Shen

Short formation time & no
pair production/annihilation
→ entire history of the
medium
Assume M � T,Q.
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First principle description of URHIC from QCD?

Observation:
Emergence of hydrodynamics
after τ∼ 1fm/c→ approx.
local equilibrium, how?

Figure: Fig: E. Iancu,
arXiv:1105.0751 [hep-ph].

Solution (?):

Qs = αsNc
1
πRA

dN
dy

, at
high energy Qs�
ΛQC D→ αs(Qs)� 1
dN
dy
∼ 1/αs� 1 Large

occupation number →
classical field
(gA= const, g → 0).
Later stage → gas of
partons described by
kinetic theory which
equilibrates.
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Descriptions of pre-equilibrium: Classical fields & EKT

Classical description, CYM (applicability: f � 1 Initially:
A∼ 1/g)

[Dµ, Fµν] = 0 (1)

EKT: Boltzman equation (applicability: f � 1/g2)

−
d f
dτ
+

pz

τ
∂pz

f = C1↔2[ f ] + C2↔2[ f ] (2)

Overlapping range of validity when 1/αs� f � 1.
Collision terms C involve matrix elements describing scattering
processes among quarks and gluons. Computed in thermal field
theory.
This talk: effective kinetic theory description. For heavy quarks
in classical setup, see: JHEP 09 (2020) 077.
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Isotropization in the kinetic theory stage: "Bottom-up"

Figure: Kurkela & Zhu, Phys.Rev.Lett. 115 (2015) 18, 182301

Isotropization in 3 stages:
Stage 1: competition of momentum diffusion and expansion,
expansion wins → anisotropy grows.
Stage 2: Soft thermal bath starts to form, momentum diffusion
and expansion roughly equal → constant anisotropy.
Stage 3: Soft thermal bath formed, energy cascades from hard
particles to the thermal bath.

Originally proposed in: Baier et. al. PLB 502 (2001) 51-58.
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Extracting the diffusion coefficient (PRC 71 (2005) 064904)

In the kinetic theory framework κ is given by (gq→ gq, t-channel
gluon exchange)

κ=




∆k2
�

∆t
=

1
6M

∫

d3kd3q

(2π)6 8|k||k + q |M
2πδ(|k + q | − |k|)

× q2 |M|2gluon f (k)(1+ f (|k + q |)) (3)

k and k′ gluon momenta, q = k− k′, p and p′ incoming and
outgoing heavy quark momenta.

|M|2gluon =
�

NcCH g4
� 16M2k2

�

1+ cos2 θkk ′
�

(q2 +m2
D)2

(4)
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Pressure isotropization
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I was generated by: plot_PTPL.py using datasets: transport_output_120/
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System is fairly isotropic at t ≈ τR

τR =
4πη/s(λ)

T
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Diffusion coefficient: approach to thermal
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I was generated by: plot_kappa_kappaeq_vs_t_tauR.py

λ = 10, pmin = 0.025
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λ = 1, pmin = 0.025

κeq computed using BE
distribution (thermal).
Match same ε, mD, T∗?
Winner: T∗!
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I was generated by: plot_Tstar_analytical_vs_numerical.py
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Conclusions

We have:
κ during bottom-up isotropization (EKT): no large deviations
from thermal. Best match achieved when compare these with
the same IR temperature.

Future plans:
Precision comparison of EKT and CYM?
Possibly other transport coefficients such as q̂ using
CYM/EKT.
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Isotropization of heavy quarks: how to compare to thermal?
Comparison not unambiguous! Same ε, mD, T? T as an
integral moment of particle distribution:

T∗ =

2λ
∫ d3p

(2π)3
f (p)(1+ f (p))

m2
D

, (5)

Discretization effects: ε∼
∫

d3pp f (p)→
∫∞

pmin
d3pp f (p)
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Thermal
analytical, pmin = 0.05, λ = 10
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analytical, pmin = 0.05, λ = 1
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