Partikeldagarna 2021

The six-pion amplitude

Tomáš Husek Lund University

In collaboration with Johan Bijnens (Lund U.)

Göteborg November 22, 2021

Introduction

In low-energy region, we cannot study perturbatively the interactions of hadrons directly from QCD \hookrightarrow alternative approaches \rightarrow Chiral perturbation theory (ChPT)

Weinberg, Phys.A 96, (1979), Gasser and Leutwyler, Ann.Ph.158 (1984)

Many observables are known in ChPT to a high loop order

→ only recently it has become of interest to calculate the six-pion amplitude at low energies
after it has been estimated using lattice QCD

```
Blanton et al., PRL 124 (2020), JHEP 10 (2021),
Fischer et al., EPJC 81 (2021), Hansen et al., PRL 126 (2021),
Brett et al., PRD 104 (2021)
```

The six-pion amplitude at tree level was first done using current algebra methods

```
e.g. Osborn, Lett.N.Cim.2 (1969)
```

It has been redone with Lagrangian methods many times, not known to one-loop order

```
e.g. Low et al., JHEP 11 (2019), Bijnens et al., JHEP 11 (2019)
```

We have therefore calculated at NLO the six-pion amplitude

 \hookrightarrow within ChPT generalization to the O(N + 1)/O(N) massive nonlinear sigma model \hookrightarrow two(-guark)-flavour ChPT equivalent to O(4)/O(3)

Massive $\mathrm{O}(N+1)/\mathrm{O}(N)$ nonlinear sigma model extended beyond the LO

$$\mathcal{L} = \frac{F^2}{2} \partial_{\mu} \Phi^{\mathsf{T}} \partial^{\mu} \Phi + F^2 \chi^{\mathsf{T}} \Phi$$
$$+ l_1 (\partial_{\mu} \Phi^{\mathsf{T}} \partial^{\mu} \Phi) (\partial_{\nu} \Phi^{\mathsf{T}} \partial^{\nu} \Phi) + l_2 (\partial_{\mu} \Phi^{\mathsf{T}} \partial_{\nu} \Phi) (\partial^{\mu} \Phi^{\mathsf{T}} \partial^{\nu} \Phi) + l_3 (\chi^{\mathsf{T}} \Phi)^2 + l_4 \partial_{\mu} \chi^{\mathsf{T}} \partial^{\mu} \Phi$$

$$\Phi\colon$$
 real vector of $N+1$ components, $\Phi^\mathsf{T}\Phi=1$ $\chi^\mathsf{T}=\left(M^2,\,\vec{0}\,\right)$

F, M: bare pion decay constant and mass

 \hookrightarrow calculate the four-pion and six-pion amplitudes at NLO

Theoretical setting

Different parameterizations

$$\Phi_1 = \left(\sqrt{1-arphi},\,rac{oldsymbol{\phi}^{\mathsf{T}}}{F}
ight)^{\mathsf{T}}$$

$$\Phi_2 = \frac{1}{\sqrt{1+arphi}} \left(1, \, \frac{oldsymbol{\phi}^\mathsf{T}}{F} \right)^\mathsf{T}$$

$$\Phi_3 = \left(1 - \frac{1}{2}\varphi, \sqrt{1 - \frac{1}{4}\varphi} \frac{\phi^{\mathsf{T}}}{F}\right)^{\mathsf{T}}$$

$$\Phi_4 = \left(\cos\sqrt{\varphi}, \, \frac{1}{\sqrt{\varphi}}\sin\sqrt{\varphi} \, \frac{\boldsymbol{\phi}^\mathsf{T}}{F}\right)^\mathsf{T}$$

$$\Phi_5 = \frac{1}{1 + \frac{1}{4}\varphi} \left(1 - \frac{1}{4}\varphi, \frac{\boldsymbol{\phi}^\mathsf{T}}{F} \right)^\mathsf{T}$$

Gasser and Leutwyler, Ann.Ph.158 (1984)

simple variation

ESB term only gives mass terms of ϕ_i s

follows the general prescription from Coleman, Wess and Zumino, PR 177 (1969)

Weinberg, PR 166 (1968)

$$arphi \equiv rac{m{\phi}^1 m{\phi}}{F^2}$$
 , with $m{\phi}^{\sf T} = (\phi_1, \dots, \phi_N)$ a real vector of N components (flavours)

 \hookrightarrow few examples of the whole class of parametrizations

$$\Phi = \left(\sqrt{1-\varphi\,f^2(\varphi)},\,f(\varphi)\,\frac{\pmb{\phi}^\mathsf{T}}{F}\right)^\mathsf{T},\quad\text{with }f(x)\text{ any analytical function satisfying }f(0) = 1$$

Four-pion amplitude

On-shell amplitude in general

$$p_i,\,i=1,\ldots,4$$
 pion incoming four-momenta, $\sum p_i=0$ f_i flavours

Invariance under rotation in the isospin space and crossing symmetry implies

$$\begin{split} &A_{4\pi}(p_1,f_1,p_2,f_2,p_3,f_3,f_4)\\ &=\delta_{f_1f_2}\delta_{f_3f_4}A(p_1,p_2,p_3)+\delta_{f_1f_3}\delta_{f_2f_4}A(p_3,p_1,p_2)+\delta_{f_2f_3}\delta_{f_1f_4}A(p_2,p_3,p_1) \end{split}$$

The six-pion amplitude

Mandelstam variables

$$\begin{split} s &= (p_1 + p_2)^2, \ t = (p_1 + p_3)^2, \ u = (p_2 + p_3)^2, \ s + t + u = 4M^2 \\ &\hookrightarrow \text{subamplitude} \ A(p_1, p_2, p_3) = A(s, t, u) \end{split}$$

Four-pion amplitude Leading order

The leading-order $\mathcal{O}(p^2)$ amplitude stems from a single diagram

LO subamplitude (with LO relations $M \to M_\pi$ and $F \to F_\pi$)

$$A^{(2)}(s,t,u) = \frac{1}{F_{\pi}^2} (s - M_{\pi}^2)$$

At NLO, one-loop diagrams (two topologies of 4 one-loop diagrams in total) and a counterterm

+ NLO field renormalization, and mass and decay-constant redefinitions applied to the LO graph \hookrightarrow schematically $A_{4\pi}^{(4)} = \mathcal{M}_{\text{1-loop}} + \mathcal{M}_{\text{CT}} + 4(Z^{1/2} - 1)\mathcal{M}_{\text{LO}}^{(2)} + \mathcal{M}_{\text{LO}}^{(4)}$

The Z factor is related to the pion self-energy Σ : $\frac{1}{Z}=1-\left.\frac{\partial\Sigma(p^2)}{\partial p^2}\right|_{p^2=M_z^2}$

Standard relations $M_\pi^2=M^2-\overline{\Sigma}$, $F_\pi=F(1+\delta F)$ give the substitutions at the given order

$$\begin{split} M^2 &\to M_\pi^2 + \overline{\Sigma} \,, \qquad \quad \overline{\Sigma} = \frac{M_\pi^4}{F_\pi^2} \left[2 l_3^r + \frac{1}{2} (N-2) L \right] + \mathcal{O} \bigg(\frac{1}{F_\pi^4} \bigg) \\ \frac{1}{F^2} &\to \frac{1}{F_\pi^2} (1 + 2 \delta F) \,, \quad \delta F = \frac{M_\pi^2}{F_\pi^2} \left[l_4^r - \frac{1}{2} (N-1) L \right] + \mathcal{O} \bigg(\frac{1}{F_\pi^4} \bigg) \end{split}$$

Parametrization-independent and UV-finite result

$$\begin{split} F_\pi^4 A^{(4)}(s,t,u) &= (t-u)^2 \left(-\frac{5}{36} \, \kappa - \frac{1}{6} \, L + \frac{1}{2} \, t_2' \right) \\ &+ M_\pi^2 s \bigg[\left(N - \frac{29}{9} \right) \kappa + \left(N - \frac{11}{3} \right) L - 8 l_1' + 2 l_4' \bigg] \\ &+ s^2 \bigg[\left(\frac{11}{12} - \frac{N}{2} \right) \kappa + \left(1 - \frac{N}{2} \right) L + 2 l_1' + \frac{1}{2} \, t_2 \bigg] \\ &+ M_\pi^4 \bigg[\left(\frac{20}{9} - \frac{N}{2} \right) \kappa + \left(\frac{8}{3} - \frac{N}{2} \right) L + 8 \, l_1' + 2 l_3' - 2 l_4' \bigg] \\ &+ \bar{J}(s) \bigg[\left(\frac{N}{2} - 1 \right) s^2 + (3 - N) M_\pi^2 s + \left(\frac{N}{2} - 2 \right) M_\pi^4 \bigg] \\ &+ \bigg\{ \frac{1}{6} \, \bar{J}(t) \big[2 t^2 - 10 M_\pi^2 t - 4 M_\pi^2 s + s t + 14 M_\pi^4 \big] + (t \leftrightarrow u) \bigg\} \end{split}$$

Above we used

$$\kappa = \frac{1}{16\pi^2}\,, \quad L \equiv \kappa \log \frac{M_\pi^2}{\mu^2}\,, \quad \bar{J}(q^2) \equiv \kappa \left(2 + \sigma \log \frac{\sigma - 1}{\sigma + 1}\right), \quad \sigma = \sqrt{1 - \frac{4M_\pi^2}{q^2}}$$

Form as given in *Bijnens et al.*, PLB 374 (1996), NPB 508 (1997), generalized to $N \neq 3$ The expressions agree with the known results

 \hookrightarrow for N=3, equivalent (to a given order) to Gasser and Leutwyler, Ann.Ph.158 (1984)

 \hookrightarrow on the N dependence, e.g. Dobado and Morales, PRD 52 (1995),

Bijnens and Carloni, NPB 827 (2010), NPB 843 (2011)

4 pions
$$\rightarrow$$
 3 channels/permutations/ways to distribute 4 pions in 2 pairs

6 pions
$$\rightarrow$$
 10 ways in 2 groups of three (P_{10}) \hookrightarrow 15 ways in 3 pairs (P_{15})

The full six-pion amplitude at $\mathcal{O}(p^4)$

$$A_{6\pi} = A_{6\pi}^{(4\pi)} + A_{6\pi}^{(6\pi)}$$

 $A_{6\pi}^{(4\pi)}$ can be written in terms of the four-pion amplitude and $A_{6\pi}^{(6\pi)}$ is the remainder

$$A_{6\pi}^{(4\pi)} \equiv \sum_{P_{10},f_{0}} A_{4\pi}(p_{i},f_{i},p_{j},f_{j},p_{k},f_{k},f_{0}) \frac{(-1)}{p_{ijk}^{2} - M_{\pi}^{2}} A_{4\pi}(p_{l},f_{l},p_{m},f_{m},p_{n},f_{n},f_{0})$$

 \hookrightarrow residue at the pole unique, off-shell extrapolation away from $p_{ijk}^2 \equiv (p_i + p_j + p_k)^2 = M_\pi^2$ not

 $A_{4\pi}(p_i, f_i, p_j, f_j, p_k, f_k, f_o)$ is the four-pion amplitude with one leg off-shell

$$\begin{split} &A_{4\pi}(p_i,f_i,p_j,f_j,p_k,f_k,f_\circ)\\ &=\delta_{f_if_j}\delta_{f_kf_\circ}A(p_i,p_j,p_k)+\delta_{f_if_k}\delta_{f_jf_\circ}A(p_k,p_i,p_j)+\delta_{f_jf_k}\delta_{f_if_\circ}A(p_j,p_k,p_i) \end{split}$$

The (four-pion) subamplitude
$$A(p_i,p_j,p_k)=A(s,t,u)$$
 is defined as usual $\hookrightarrow s=(p_i+p_j)^2,\ t=(p_i+p_k)^2$ and $u=(p_j+p_k)^2,$ although now $s+t+u=3M_\pi^2+p_{ijk}^2$

The six-pion amplitude

We have chosen a particular form for the off-shell four-pion subamplitude A(s,t,u) \hookrightarrow other off-shell extrapolations are possible and will lead to a different $A_{6\pi}^{(6\pi)}$ $\hookrightarrow A_{6\pi}^{(4\pi)}$ independent of the parametrization used, consequently also $A_{6\pi}^{(6\pi)}$

$$A_{6\pi}^{(6\pi)} \equiv \sum_{P_{15}} \delta_{f_i f_j} \delta_{f_k f_l} \delta_{f_m f_n} A(p_i, p_j, p_k, p_l, p_m, p_n)$$

The (six-pion) subamplitude $A(p_1, p_2, p_3, p_4, p_5, p_6)$

← no poles, only cuts (however, the imaginary part of the triangle integrals can contain poles)

The six-pion amplitude

- - ← fully symmetric under the interchange of any of the pairs
 - \hookrightarrow symmetric for the interchange within a pair

The full six-pion amplitude at $\mathcal{O}(p^4)$

$$A_{6\pi} = A_{6\pi}^{(4\pi)} + A_{6\pi}^{(6\pi)}$$

- \hookrightarrow (a) only contributes to $A_{6\pi}^{(6\pi)}$
- \hookrightarrow (b) contributes to both the pole and non-pole parts $A_{6\pi}^{(4\pi)}$ and $A_{6\pi}^{(6\pi)}$

At LO a simple expression

$$A^{(2)}(p_1, p_2, p_3, p_4, p_5, p_6) = \frac{1}{F_{-}^4} \left(2p_1 \cdot p_2 + 2p_3 \cdot p_4 + 2p_5 \cdot p_6 + 3M_{\pi}^2 \right)$$

 \hookrightarrow dependence on momenta is the only one at this order compatible with the symmetries

The main new result is the next-order six-pion subamplitude

$$F_{\pi}^{6}A^{(4)}(p_{1}, p_{2}, \dots, p_{6}) = A_{C_{3}} + A_{C_{21}}^{(1)} + A_{C_{21}}^{(2)} + A_{C_{11}} + A_{C}^{(1)} + A_{C}^{(2)} + A_{C}^{(3)} + A_{C}^{(1)} + A_{J}^{(2)} + A_{\pi} + A_{L} + A_{l}$$

 \hookrightarrow each of the terms has the required symmetries under interchange of momenta

Large number of kinematic invariants \to reduction to master integrals (scalar triangle integrals) leads to an enormous expression

 \hookrightarrow we have chosen a redundant basis of integrals that have good symmetry properties

Results are rather lengthy, but can be written in a relatively compact way

→ see paper PRD 104 (2021) 054046, arXiv:2107.06291

We choose a symmetric $3 \rightarrow 3$ scattering configuration given by

$$p_{1} = \left(E_{p}, p, 0, 0\right)$$

$$p_{2} = \left(E_{p}, -\frac{1}{2}p, \frac{\sqrt{3}}{2}p, 0\right)$$

$$p_{3} = \left(E_{p}, -\frac{1}{2}p, -\frac{\sqrt{3}}{2}p, 0\right)$$

$$p_{4} = \left(-E_{p}, 0, 0, p\right)$$

$$p_{5} = \left(-E_{p}, \frac{\sqrt{3}}{2}p, 0, -\frac{1}{2}p\right)$$

$$p_{6} = \left(-E_{p}, -\frac{\sqrt{3}}{2}p, 0, -\frac{1}{2}p\right)$$

We use following numerical inputs:

$$egin{aligned} M_\pi &= 0.139570 \, {\sf GeV} & & & ar{l}_1 &= -0.4 \ F_\pi &= 0.0927 \, {\sf GeV} & & & ar{l}_2 &= 4.3 \ \mu &= 0.77 \, {\sf GeV} & & & ar{l}_3 &= 3.41 \ N &= 3 & & & ar{l}_4 &= 4.51 \end{aligned}$$

Bijnens, Ecker, ARNPS 64 (2014) Colangelo, Gasser, Leutwyler, NPB 603 (2001) Aoki et al., EPJC 77 (2017)

ZENEROZDENE ENERGE ZODUEN			
$F_\pi^2 \mathrm{Re} A$			
$A_{6\pi}^{(4\pi)} \; ({ m LO}) \ A_{6\pi}^{(4\pi)} \; ({ m NLO})$	-319.00 -28.54	$A^{(2)}(p_1,\ldots,p_6)$ $A^{(4)}(p_1,\ldots,p_6)$	15.99 11.16
$F_\pi^2 \times \mathrm{Re}A/F_\pi^6$			
A_{C_3}	0.002	$A_J^{(1)}$	1.917
$A_{C_{21}}^{(1)}$	-0.948	$A_J^{(2)}$	1.835
$A_{C_{21}}^{(2)}$	0.682	A_{π}	
$A_{C_{11}}$	0.090	A_L	
$A_C^{(1)}$	-0.026	A_l	
$A_C^{(2)}$	0.890	Tree to the	
$A_C^{(3)}$	-0.984		

Real parts of the amplitudes for $p=0.1\,\mathrm{GeV}$

In the limit $p \to 0$, we find the following analytical expressions:

$$F_{\pi}^2 A^{(2)}(p_1, p_2, \dots, p_6) \Big|_{p \to 0} = 5 \frac{M_{\pi}^2}{F_{\pi}^2} \approx 11.33$$

$$\begin{split} F_{\pi}^{2} & \operatorname{Re} A^{(4)}(p_{1}, p_{2}, \dots, p_{6}) \Big|_{p \to 0} \\ &= \underbrace{\frac{M_{\pi}^{4}}{F_{\pi}^{4}}}_{A_{\pi}} \left\{ \underbrace{\frac{1}{18}(-2 - 225N)\kappa}_{A_{\pi}} + \underbrace{\frac{1}{6}(-14 - 75N)L}_{A_{L}} + \underbrace{(16l_{1}^{t} + 56l_{2}^{t} + 6l_{3}^{t} + 20l_{4}^{t})}_{A_{I}} \right. \\ &\quad \left. + \underbrace{(-44 + 30N)\kappa}_{A_{J}^{(1)}} + \underbrace{(24)\kappa}_{A_{J}^{(2)}} + \underbrace{\frac{1}{2}\kappa}_{A_{C}^{(1)}} \underbrace{(-30 - 9N)}_{A_{C}^{(1)}} + \underbrace{(20)}_{A_{C}^{(2)}} + \underbrace{(-16)}_{A_{C}^{(3)}} \right] \right\} \approx 6.416 \end{split}$$

Summary

We calculated the pion mass, decay constant, the four-pion and six-pion amplitude to NLO in the massive $\mathrm{O}(N)$ nonlinear sigma model

← relevant NLO Lagrangian constructed in analogy with two(-quark)-flavour ChPT Lagrangian

 \hookrightarrow our results agree with previous results for N=3 and general- $\!N$ behaviour

Our main result is the six-pion amplitude

 \hookrightarrow split in one-particle reducible and irreducible parts

The reducible part employs the off-shell four-pion amplitude generalizing (beyond N=3) the amplitude given by $Bijnens\ et\ al.$, PLB 374 (1996), NPB 508 (1997)

The irreducible part can be divided in a large number of subparts

- \hookrightarrow each subpart satisfies the expected permutation symmetries
- ← the choice of triangle loop integrals with high symmetry allows for a fairly compact expression
- \hookrightarrow NLO correction is sizable but not very large

Outlook

Work in progress

← combine our results with the methods for extracting three-body scattering from finite volume in lattice QCD

Might be of interest for the amplitude community

More details in PRD 104 (2021) 054046, arXiv:2107.06291

Backup slides

Backup

Massive $\mathrm{O}(N+1)/\mathrm{O}(N)$ nonlinear sigma model extended beyond the LO

$$\mathcal{L} = \frac{F^2}{2} \partial_{\mu} \Phi^{\mathsf{T}} \partial^{\mu} \Phi + F^2 \chi^{\mathsf{T}} \Phi$$
$$+ l_1 (\partial_{\mu} \Phi^{\mathsf{T}} \partial^{\mu} \Phi) (\partial_{\nu} \Phi^{\mathsf{T}} \partial^{\nu} \Phi) + l_2 (\partial_{\mu} \Phi^{\mathsf{T}} \partial_{\nu} \Phi) (\partial^{\mu} \Phi^{\mathsf{T}} \partial^{\nu} \Phi) + l_3 (\chi^{\mathsf{T}} \Phi)^2 + l_4 \partial_{\mu} \chi^{\mathsf{T}} \partial^{\mu} \Phi$$

$$l_i = l_i^r - \frac{1}{16\pi^2} \, \frac{\gamma_i}{2} \left(\frac{2}{4-d} - \gamma_{\mathsf{E}} + \log 4\pi - \log \mu^2 + 1 \right), \quad l_i^r = \frac{1}{16\pi^2} \frac{\gamma_i}{2} \left(\overline{l}_i + \ln \frac{M_\pi^2}{\mu^2} \right)$$

From studying the pion mass, decay constant and the four-pion amplitude

$$\gamma_3 = 1 - \frac{N}{2}$$

$$\gamma_4 = N - 1$$

$$\gamma_1 = \frac{N}{2} - \frac{7}{6}$$

$$\gamma_2 = \frac{2}{3}$$