Partikeldagarna 2021

Report from the Lund University ESSnuSB Group

A. Burgman

Division for Nuclear Physics Lund University

2021.11.23

A. Burgman

2021.11.23 | Partikeldagarna 2021

ESSnuSB

• • •

ESSnuSB

A. Burgman

2021.11.23 | Partikeldagarna 2021

2 of 13

The ESS Neutrino Super-Beam

Purpose

- ▷ Measure ν -oscillation (incl. δ_{CP})
- \triangleright ν & BSM-physics

▷ 2nd oscillation max. of high-intensity neutrino beam from the European Spallation Source

The Collaboration

- ~ 50 active researchers, > 10 countries
 - \triangleright Sweden: UU + LU
 - ▷ Collaboration meeting this week (CERN)

CDR in early 2022

- LU group \rightarrow water-Cherenkov near detector
 - J. Cederkäll, professor
 - P. Christiansen, professor
 - J. Park, postdoc (now at IBS, Korea)
 - A. Burgman, postdoc

A. Burgman

The ESS Neutrino Super-Beam

Purpose

- ▷ Measure ν -oscillation (incl. δ_{CP})
- \triangleright ν & BSM-physics

2nd oscillation max. of high-intensity neutrino beam from the European Spallation Source

Producing the neutrino beam

- \hookrightarrow ESS linac upgrade for dedicated *p*-beam
 - \triangleright 5 MW, 2.5 GeV E_{kin} , 14 Hz repetition
- $\,\hookrightarrow\,$ Compress pulses to $1.1\,\mu s$
- $\,\hookrightarrow\,$ Produce π^\pm with p-beam on four Ti-targets
 - Sign-select with magnetic focusing horn
- \hookrightarrow Produce u-beam in 50 m decay tunnel
- $\,\hookrightarrow\,$ Unoscillated beam at near detector, $\sim 250\,m$
- → Oscillated beam at far detector,
 360 km (Zinkgruvan) or 540 km (Garpenberg)

Near Detector

Two-fold purpose

- \triangleright Measure ν -flux: $\sim 10^7$ events yr⁻¹ (200 d, 2.16 $\times 10^{23}$ p.o.t.)
- ▷ Measure $\sigma_{\nu_e N}$: ν_e -fraction < 0.5 %
 - $\rightarrow\,$ requires efficient selection of ν_e

• • •

Near Detector

Two-fold purpose

- \triangleright Measure ν -flux: $\sim 10^7$ events yr⁻¹ (200 d, 2.16 $\times 10^{23}$ p.o.t.)
- ▷ Measure $\sigma_{\nu_e N}$: ν_e -fraction < 0.5 %
 - $\rightarrow\,$ requires efficient selection of ν_e

Two main components						
\triangleright	$ ightarrow 1.4 imes 1.4 imes 0.5 \mathrm{m^3}$					
${ m SFGD} \ arpropto \sim 10^6$ plastic scintillator cubes, $(1 imes 1 imes 1) \ { m cm}^3$						
Simil	lar to Hyper-K S	SuperFGD				
WC ▷	11 m length 4.7 m radius	▷ 30 % PMT coverage▷ 3.5 inch PMTs				

2021.11.23 | Partikeldagarna 2021

Electron-Neutrino Event Selection

- 1. Separating e^{\pm} from μ^{\pm}
- 2. Separating ν_e from ν_{μ}

Electron-Neutrino Event Selection

Separating e^{\pm} from μ^{\pm}

Reject muons below Cherenkov threshold posing as electrons

Reco. quality cut

Reject low-brightness and closeto-wall events for reco. quality

Cherenkov-ring resolution cut

Reject events too close to tank wall in propagation direction

- ▷ Simulated with WCSim
- Reconstructed using fiTQun tuned to our detector

Thank you to Hyper-Kamiokande members:

E. O'Sullivan, M. Wilking,

C. Vilela, H. Tanaka, B. Quilain

A. Burgman

Separating e^{\pm} from μ^{\pm}

Selection acceptance

- *e* 54.9 %
- μ 50.3 %

Separating e^{\pm} from μ^{\pm}

Selection acceptance

- *e* 54.9 %
- μ 50.3 %

Reco. performance

 $e \frac{\text{corr-ID } 97.9\%}{\text{mis-ID } 2.1\%}$ $\mu \frac{\text{corr-ID } 99.8\%}{\text{mis-ID } 0.2\%}$

Separating ν_e from ν_μ

- ▷ Selection criteria for neutrino events
 - hinspace Rejecting events with π^{\pm}

Pion-like cut

Reject events identified as electrons, but more likely to be (neutral) pions

Multi-subevent cut

Reject events with multiple subevents

Electron-Neutrino Event Selection

Multi-subevent cut

Multi-subevent cut

Reject events with multiple subevents $(\geq 2 \text{ for } e, \geq 3 \text{ for } \mu)$

Assuming one final-state particle (when \triangleright there are multiple) gives poor initialenergy reconstruction performance

A. Burgman

10

 10^{3}

Event count [yr⁻¹

Event rate per 200 d running-year

Positive polarity $(u$ -select)	Tot. interactions Trigger	ν_{μ} 7.25×10^{7} 3.81×10^{7}	ν_e 3.57×10^5 5.61×10^4	$ar{ u}_{\mu}$ 1.89 × 10 ⁵ 9.09 × 10 ⁴	$ar{ u}_e$ 8.33 × 10 ² 9.35 × 10 ¹
Negative polarity $(\bar{\nu}$ -select)	Tot. interactions Trigger	$egin{array}{c} u_\mu \\ 6.88 imes 10^5 \\ 3.48 imes 10^5 \end{array}$	$ u_e $ 4.74 × 10 ³ 6.45 × 10 ²	$ar{ u}_{\mu}$ $1.39 imes10^7$ $6.84 imes10^6$	$ar{ u}_e$ 4.12 × 10 ⁴ 5.04 × 10 ³

 Efficient energy reconstruction

Quasi-elastic assumption:

$$E_{\nu} = \frac{m_F^2 - m_{IB}^2 - m_l^2 + 2m_{IB}E}{2(m_{IB} - E_l + p_l\cos\theta_l)}$$

A. Burgman

2021.11.23 | Partikeldagarna 2021

Event rate per 200 d running-year

		e -ID $ u_{\mu}$	e -ID $ u_e$	$e ext{-}$ ID $ar u_\mu$	$e ext{-} ext{ID}~ar{ u}_e$
	Trigger	1.09×10^{7}	5.26×10^{4}	$2.66 imes 10^4$	$8.82 imes 10^{1}$
Positive polarity	Charged-lepton cuts	5.72×10^{5}	$2.29 imes 10^4$	$1.43 imes 10^3$	$3.58 imes10^{1}$
$(\nu$ -select)	Neutrino cuts	$1.50 imes 10^4$	$1.10 imes10^4$	$4.11 imes10^{1}$	3.27×10^{1}

 $S(\nu_e + \bar{\nu}_e)/B(\nu_\mu + \bar{\nu}_\mu) \sim 0.7$

Negative polarity $(\bar{\nu}$ -select)

 $S(\nu_e + \bar{\nu}_e)/B(\nu_\mu + \bar{\nu}_\mu) \sim 1$

▷ Efficient increase of $\nu_e(\bar{\nu}_e)$ fraction \Rightarrow measure $\sigma_{\nu_e N}$

A. Burgman

2021.11.23 Partikeldagarna 2021

Summary

Summary

• •

Summary

Summary

${\rm LU~Group} \to {\rm ESSnuSB~ND}$

- ▷ Super Fine-Grained Detector ($\sim 1 \text{ m}^3$)
- ▷ Water-Cherenkov Detector (~ 1 kt)

Purpose

- ▷ Measure ν_{μ} -flux
- ▷ Measure $\sigma_{\nu_e N}$

A. Burgman

•

Thank you

.

Backups

• • • • • • • • •

Backups

A. Burgman

2021.11.23 | Partikeldagarna 2021

12 of 13

Backup 1.1 — Super Fine-Grained Detector

Positive horn polarity (selecting ν)

Similar to Hyper-K SuperFGD

 $\label{eq:rescaled} \begin{array}{l} \vartriangleright & 1.4 \times 1.4 \times 0.5 \mbox{ m}^3 \\ \cr & \backsim & 10^6 \mbox{ plastic scintillator cubes} \\ & \backsim & 1 \times 1 \times 1 \mbox{ cm}^3 \end{array}$

Mass 1030 kg C₈H₈ 1014.55 kg C₁₈H₁₄ 15.45 kg

	Time	Molecule	v_{μ}	Ve	\bar{v}_{μ}	$\overline{\mathbf{v}}_{e}$
C C	200 days	C8H8	57 334.5	309.178	120.694	0.557
		C18H14	828.734	4.46	1.644	0.007
		Total	58 163.3	313.638	122.339	0.565
N C	200 days	C8H8	39 471	167.746	117.034	0.4649
		C18H14	560.937	2.383	1.768	0.0066
		Total	40 031.9	170.129	118.802	0.4715

Negative horn polarity (selecting $\bar{\nu}$)

	Time	Molecule	v_{μ}	Ve	$\overline{\mathbf{v}}_{\mu}$	\overline{v}_{e}
C C	200 days	C8H8	524.282	3.874	8 888.4	28.709
		C18H14	7.574	0.056	120.994	0.391
		Total	531.856	3.929	9 009.34	29.101
N C	200 days	C8H8	391.182	2.432	8 336.22	22.447
		C18H14	5.553	0.034	117.87	0.317
		Total	396.736	2.467	8 454.09	22.764

Backup 2.1 — Separating e^{\pm} from μ^{\pm}

Sub-Cherenkov cut

Reject muons below Cherenkov threshold posing as electrons

Backup 2.2 — Separating e^{\pm} from μ^{\pm}

Reco. quality cut

Reject low-brightness and closeto-wall events for reco. quality

12 of 13

Backup 2.3 — Separating e^{\pm} from μ^{\pm}

Cherenkov-ring resolution cut

Reject events too close to tank wall in propagation direction

A. Burgman

2021.11.23 Partikeldagarna 2021

0 0 0 0 0 • 0

Backup 3.1 — Separating ν_e from ν_{μ}

Pion-like cut

Reject events identified as electrons, but more likely to be (neutral) pions

Backup 3.2 — Separating ν_e from ν_{μ}

Multi-subevent cut

Reject events with multiple subevents

