

The heavy-ion group in Lund

- 3 Seniors
 - Alice Ohlson, David Silvermyr, Peter Christiansen
- 2 Postdoc
 - Sumit Basu, Vytautas Vislavicius (after 3 years at NBI)
 - (Tuva Richert left to pursue a career in journalism)
- 3 Ph.D. Students
 - Adrian Nassirpour, Oliver Matonoha, Omar Vazquez Rueda
- Activities
 - Group: ALICE
 - Individuals works on preparations for: sPHENIX, HIBEAM/NNBAR experiment at ESS, ESSvSB

- Continuous readout (factor 10-100 gain for signals that cannot be triggered on)
- Main new features
 - New ITS2: 7 layers of monolithic active pixel sensors (MAPS)
 - GEM continuous readout for TPC (Lund group involvement)

First pilot beam collisions (proton-proton, $\sqrt{s} = 900$ GeV)

 A lot of work to be done to get ready for Run 3 but first results are very promising

New ITS3 for Run 4

Motivation for ITS3

Motivation for ITS3

- Observations:
 - Si makes only 1/7th of total material
 - irregularities due to support/ cooling

- Observations:
- Si makes only 1/7th of total material
- irregularities due to support/ cooling
- Removal of water cooling
- possible if power consumption stays below 20 mW/cm²
- Removal of the circuit board (power+data)
 - possible if integrated on chip
- Removal of mechanical support
 - benefit from increased stiffness by rolling Si wafers

The Lund ALICE group has obtained funding from RFI to join the ITS3 upgrade project

ITS3

Magnus Mager (CERN) | MAPS R&D in 65 nm | LCWS2021 | 18.03.2021 | 7

ITS3 can lead on to a completely new ALICE 3 experiment

ALICE 3 next-generation heavy-ion programme for LHC Run 5 and beyond

Invited speakers

- E. Aschenauer (BNL)
- S. Bass (Duke Univ.)
- Y. Lee (MIT)
- R. Rapp (Texas A&M Univ.)
- G. Roland (MIT)
- A. Rothkopf (Univ. of Stavange
- J. Stroth (Univ. of Frankfurt)
- Z. Xu (BNL)

Workshop Oct 18 + 19, 2021 (CERN + zoom)

https://indico.cern.ch/e/alice3

- Low p_T oriented/rare probes programme (where the medium "sits")
- Indico link: https://indico.cern.ch/event/1063724/timetable/

<u>Topics</u>

- Physics programme
 - Heavy flavour probes of QGP transport and hadronisation
 - Multi-charm baryons
 - Exotic states in the QGP
 - Electromagnetic probes of the QGP
 - Nuclear states
 - Strong interaction potentials
 - ...
- Physics performance
- Detector concept

Lund ALICE data analyses

- A lot of activities (mainly around KAW CLASH)
- Many activities are focused on a single large data set
 - >10⁹ MB pp 13 TeV events
- Have a complete set of identified particles $-\pi, K, p, \phi, K_s^0, \Lambda, \Xi$, (and still hope to do Ω)

Lund ALICE data analyses

- A lot of activities (mainly around KAW CLASH)
- Many activities are focused on a single large data set
 - >10⁹ MB pp 13 TeV events
- Have a complete set of identified particles $-\pi, K, p, \phi, K_s^0, \Lambda, \Xi$, (and still hope to do Ω)
- Several papers in progress using this data
 - Spherocity (Oliver Matonoha)
 - R_T (was covered last year by Adrian Nassirpour)
 - Ξ -identified hadron correlations (more details here)

The main result that lead to CLASH

PYTHIA: pp CILING AND COLORS

https://www.hep.lu.se/clash/

~ \sum_{MPI} parton—parton interactions

predicts "more of the same" as one would expect from jet universality and "asymptotic freedom" (lack of significant final state interactions).

^{0.5} ALICE "revelation" is that this is wrong!

Wallenberg

Foundation

The main result that lead to CLASH

PYTHIA:pp $https://www.hep.lu.se/clash/~ <math>\sum_{MPI}$ parton—parton interactions

predicts "more of the same" as one would expect from jet universality and "asymptotic freedom" (lack of significant final state interactions).

ALICE "revelation" is that this is wrong!

<u>Irreversible</u> change in understanding of pp collisions

Wallenherd

Foundation

The main result that lead to CLASH

pp <u>https://www.hep.lu.se/clash/</u> ~ \sum_{MPI} parton—parton interactions

predicts "more of the same" as one would expect from jet universality and "asymptotic freedom" (lack of significant final state interactions).

ALICE "revelation" is that this is wrong!

- <u>Irreversible</u> change in understanding of pp collisions
- A new world of physics has been opened by ALICE:
 - DIPSY/Angantyr: "Microscopic extension of PYTHIA"
 - Can even challenge our AA paradigms (Pandora's box!)
 - QGP in small systems? (One fluid to rule them all?)
 - Something else?

Strangeness enhancement: Color rope explanation

Picture from C. Bierlich (string radii ~3.5 times too small!)

C. Bierlich, G. Gustafson, L. Lönnblad, A. Tarasov, JHEP 03 (2015) 148 String interactions: rope formation

$$r = \frac{r}{\bar{r}} \quad r \gg r \otimes r = \bar{r} \otimes \bar{r}$$

String interactions: junction formation

- Increase strangeness and/or baryon production
 - Ropes have increased string tension \rightarrow Produces more strangeness
 - Junctions produces more baryons
- Importantly: quarks and hadrons still produced together locally

Strangeness enhancement: EPOS explanation

- Corona is more or less like basic PYTHIA
- Core is modelled as a QGP where particle production is described by grand canonical ensemble
 - Strangeness is produced thermally and only conserved globally

RVMQUE STORE

Strangeness enhancement: full thermal description

Treat evolution as a change from canonical to grand canonical. "Opposite" picture: strangeness suppressed in small system!

Qualitative picture

PYTHIA/pp models: Local enhancement!

EPOS and thermal "agrees": Enhancement is due to change from local to global conversation of strangeness (+ thermal prod. in EPOS).

Qualitative picture

- But this is in some sense also directly related to also to question of deconfinement?
 - We want to observe that quarks are "free" in the QGP
 - I want to show you how we try to measure this
- Caveat: microscopic processes are local

Measure how strangeness is balanced in $\Delta\eta$, $\Delta\phi$

Trigger on strangeness: Ξ (*ssd*)

Measure where the anti-strangeness (baryon number, charge) that balances the strangeness ends up: K^+ ($u\bar{s}$), \bar{p} ($\bar{u}\bar{u}\bar{d}$), $\bar{\Lambda}$ ($\bar{u}\bar{d}\bar{s}$), Ξ ($\bar{s}\bar{s}\bar{d}$)

Subtract the uncorrelated production via the samequantum-number correlations: $K^{-}(s\bar{u}), p(uud), \Lambda(uds), \Xi(ssd)$

Results near side (after subtraction of uncorrelated production)

- Normal strings are disfavoured as main production mechanism
- Junctions describes well protons but not so well Λ and Ξ
- EPOS LHC (QGP) limit: no microscopic picture of deconfinement.
 - A feature (grand canonical limit postulates this only correlations are from resonance decays)

Little or no multiplicity dependence

- No strong signals for change in production mechanism or increasing diffusion
 - In some sense goes against all models... (?)

Results (near side) continued

https://home.cern/news/news/cern/alicecongratulates-its-phd-thesis-award-winner

 Ξ - Ξ

- Normal strings are disfavoured as main production mechanism
- Junctions describes well protons but not so well Λ and Ξ
- IF we want to be able to test QGP in small systems directly with data on similar terms as we can test PYTHIA (and other pp generators)
 - THEN we need to develop a microscopic model of QGP deconfinement

Insights from CLASH and outlook

• Original idea: microscopic (PYTHIA++) vs macroscopic (QGP)

Insights from CLASH and outlook

- Original idea: microscopic (PYTHIA++) vs macroscopic (QGP)
- Main insights:
 - Microscopic is misleading because strings are macroscopic objects and we need microscopic QGP models to describe small systems
 - Lund string model is "confined" meaning that most soft quarks are created together with the hadrons
 - This is the much bigger difference IMO
 - We need in the AA community to develop small system QGP generators. Only way we can make comparison between "pp" and "AA" descriptions that are apples-to-apples!
 - Some local ideas presented at "Offshell-2021" (with Sumit Basu, Alice Ohlson, and David Silvermyr): <u>https://arxiv.org/abs/2110.05134</u>
 - Ideas for Run 3&4 measurements!

Insights from CLASH and outlook

- Original idea: microscopic (PYTHIA++) vs macroscopic (QGP)
- Main insights:
 - Microscopic is misleading because strings are macroscopic objects and we need microscopic QGP models to describe small systems
 - Lund string model is "confined" meaning that most soft quarks are created together with the hadrons
 - This is the much bigger difference IMO
 - We need in the AA community to develop small system QGP generators. Only way we can make comparison between "pp" and "AA" descriptions that are apples-to-apples!
 - Some local ideas presented at "Offshell-2021" (with Sumit Basu, Alice Ohlson, and David Silvermyr): <u>https://arxiv.org/abs/2110.05134</u>
 - Ideas for Run 3&4 measurements!

Thank You!

Strangeness correlations / _confinement: an old idea

Solid lines are calculations for isotropic phasespace

EVIDENCE FOR POMERON SINGLE-QUARK INTERACTIONS IN PROTON DIFFRACTION AT THE ISR

R608 Collaboration

In pp collisions we can ask the question:

Where is the anti-strangeness (strangeness) associated with production of Ξ^{-}/ssd ($\Xi^{+}/\bar{s}\bar{s}\bar{d}$) recovered?

PYTHIA/Angantyr: expect strangeness to be recovered locally (as shown to the left).

EPOS LHC: expect strangeness enhancement to be associated with a grand canonical (global) reservoir. Microscopic picture?

How do we measure that: Ξ -K correlation functions

Ξ - K correlation functions

- EPOS LHC (QGP) limit: no microscopic picture of deconfinement.
- This is as I understand it a feature (grand canonical limit postulates this only correlations are from resonance decays)

"Confinement" of baryon number in Lund strings

Normal Lund string: Ξ almost never balanced by antiproton but instead typically by antistrange baryons and even anti- Ξ !

Junction:

 Ξ balanced more by kaons and less by antistrange baryons. Broader correlations in rapidity.

Idea from CLASH workshop write up: J. Adolfsson et al, Eur. Phys. J. A 56 (2020) 11, 288, "QCD challenges from pp to A–A collisions"