Deep Learning meets Physics

Prof. Dr. Martin Erdmann, RWTH Aachen University, 24-Nov-2020

Deep Learning spectacular success

Image recognition challenge

flamingo

ruffed grouse

quail

cock

tabby

lynx

partridge

ImageNet: 1.2 million images in 1000 categories

O. Russakovsky et al, arXiv:1409.0575; K. He, X. Zhang, S. Ren, J. Sunar, arXiv:1512.03385 WMW Jie Hu, Li Shen (Oxford), Gang Sun, 2017

Generative Modeling

https://thispersondoesnotexist.com

Plan for today

- Machine learning accelerates physics research
- What deep learning is precisely: neural networks \bullet
- Examples of deep learning algorithms in (astro)particle physics

Electroweak Top Quark Production with CMS

Electroweak Top Quark Production with CMS CMS, Phys. Rev. Lett. 107, 091802 –25 Aug. 2011

Outlook and Perspectives After a Year of LHC - John Campbell

Martin Erdmann, RWTH Aachen University

* Theorist: "I almost fell out of my seat when I saw this."

Data Analysis: towards deep learning

variable = *feature*

McCulloch, W.S., Pitts, W.: Bulletin of Mathematical Biophysics (1943) 5: 115. Frank Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Spartan Books, Washington DC, 1961

Neural Network Operations

Neural Network Training

Data set

 $\{x_i, y_i\} \quad i = 1, ..., N$

Define model

 $y_m(x) = W x + b$

- Define objective function (=loss, cost) $\mathcal{L}(W, b) = \frac{1}{N} \sum_{i=1}^{N} [y_m(x_i) - y_i]^2$
- Train model by optimizing the parameters
 - $(\widehat{W}, \widehat{b}) = \arg \min \mathcal{L}(W, b)$

('supervised')

Automated parameterization of arbitrary function

7 hidden layers 200 nodes each **ReLU** activation function

original function (black symbols): fair description after 2800 training steps (purple)

- $\vec{x} \in \mathbb{R}^n \rightarrow \vec{z} \in \mathbb{R}^m$
- Function: training is million-parameter fit

Reality: function working in multi-dimensions

Deep Learning Progress

Concepts

- Fully connected
- Convolutional
- Graph
- Recurrent
- Lorentz Boost Network
- Autoencoder
- Adversarial
- Reinforcement
- Invertible

Improved set of tools

Train millions of parameters by: Data preprocessing Normalization Regularization Short cuts ...

Martin Erdmann, RWTH Aachen University

Computing

- Graphics Processing Unit (GPU)
- Software Libraries
 - TensorFlow
 - keras...

1. Fully connected networks LHC: Coupling Top-Quark – Higgs Boson

Martin Erdmann, RWTH Aachen University

CMS Collaboration, Phys. Rev. Lett. 120, 231801 – Published 4 June 2018

2. Convolutional networks to analyse image-like data

2. Convolutional networks to analyse image-like data

Electron neutrino identification

Martin Erdmann, RWTH Aachen University

A. Aurisano et al., JINST 11 (2016) P09001

Challenge: electron-neutrinos

	6 meters					

od	v _e efficiency (same purity)	
ists thm	35%	
learning I network	49%	

World's largest Calorimeter for Cosmic Rays

Martin Erdmann, RWTH Aachen University

55 km

Pierre Auger Observatory

Calorimeter: cosmic ray induced air showers

Martin Erdmann, RWTH Aachen University

Calorimeter: cosmic ray induced air showers

Martin Erdmann, RWTH Aachen University

M.Erdmann, J. Glombitza, D. Walz, 10.1016/j.astropartphys.2017.10.006

Deep Neural Network

Deep Neural Network learns physics from data within 3h

Calorimeter: cosmic ray induced air showers

Martin Erdmann, RWTH Aachen University

Deep Neural Network

Deep Neural Network learns physics from data within 3h

3. Convolution: Classic versus Graph network

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon, arXiv:1801.07829

The 2019 Top Quark Recognition Challenge

Martin Erdmann, RWTH Aachen University

Huilin Qu, L. Gouskos, arXiv:1902.08570

T. Bister, M. Erdmann, J. Glombitza, N. Langner, J. Schulte, M. Wirtz, arXiv:2003.13038

Deflections of cosmic rays in cosmic magnetic fields

Martin Erdmann, RWTH Aachen University

M. Erdmann, E. Geiser, Y. Rath, M. Rieger, JINST 14 (2019) P06006

4. Recover interaction: Lorentz Boost Network

Autonomous engineering of discriminating variables

M. Erdmann, E. Geiser, Y. Rath, M. Rieger, JINST 14 (2019) P06006

5. Autoencoder networks: inflate compressed signal T. Heimel, G. Kasieczka, T. Plehn, J.M. Thompson, SciPost Phys. 6, 030 (2019)

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua BengioarXiv:1406.2661

6. Simulations: Generative Modeling

s/ R&D·IIItrafc	ict
nab. onnaja	
detector sim	ulations
of high quali	ty.
Huge effort a	ahead for
production v	ersions

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua BengioarXiv:1406.2661

5. Simulations: Generative Modeling

Messages Machine Learning

- Using machines physicists exploit physics contained in data deeper than before
- **Construct neural networks to**
 - Autonomously find optimal solutions & variables, reduce uncertainties
 - Transport probability distributions for ultra-fast detector simulations
 - Search for new physics phenomena in data
- **Continuous quality challenge**
 - Causality, stability, uncertainty of predictions
 - **Experiment operation reality**

We ought to prepare for fundamental change to include machines in our daily work

backup

Machine Learning: Boosted Decision Trees

Causality: analysis of network predictions

Measure impact: input $x_i \rightarrow overall prediction$

G. Montavon, W. Samek, K.-R. Müller, Digital Signal Processing 73 (2018) 1

Martin Erdmann, RWTH Aachen University

31

M. Erdmann, Lukas Geiger, Jonas Glombitza, David Schmidt, Comput Softw Big Sci (2018) 2:4 M. Erdmann, Jonas Glombitza, David Walz, 10.1016/j.astropartphys.2017.10.006

For network training: adapt simulation to data

Martin Erdmann, RWTH Aachen University

Deep Network net-3: cosmic ray energy from 'data' traces

Imaging Atmospheric Cherenkov Telescopes

Martin Erdmann, RWTH Aachen University

I. Shilon et al, arXiv:1803.10698

CMS jet flavor tagging

the 1-dim Convolution adds up all properties of a track. In the RNN the summed properties of the tracks are merged.

Martin Erdmann, RWTH Aachen University

Markus Stoye, ACAT2017, CMS DSP-2017-005/013/027

Denoising Gravitational Waves with **Recurrent Denoising Autoencoder**

Martin Erdmann, RWTH Aachen University

Hongyu Shen, Daniel George, E. A. Huerta, Zhizhen Zhao1, arXiv:1711.09919

