# Search for neutrinos from precursors and afterglows of Gamma-ray Bursts using the IceCube Neutrino Observatory

Kunal Deoskar

23rd November 2020

Supervisor: Chad Finley

Asst. Supervisor: Klas Hultqvist







## Cosmic rays and neutrino connection

- CRs are composed of relativistic <sup>bh</sup>/<sub>b</sub> particles coming to Earth from outer space.
- They can lead to production of neutrinos.
- Neutrinos can help identify the sources of CRs, and how they are produced.



Image Credits: Juan Antonio Aguilar and Jamie Yang. IceCube/WIPAC

### Gamma Ray Bursts as sources of high-energy neutrinos



- Shocks in jet are likely place for CR acceleration.
- IceCube searches so far were only during the prompt phase, typically <100s, found no correlation.
- Recent observations of gammas by HESS long after prompt phase motivates us to look in a larger time window.

Image Credits: NASA

3

## **IceCube Neutrino Observatory**



- A water Cherenkov detector at the South Pole making use of Antarctic ice as the medium.
- Total instrumented volume: 1 km<sup>3</sup>.
- Total 5160 Digital Optical Modules deployed over 86 strings.

# Data for the analysis

### Neutrino data:

- I use 8 years of IceCube data continuous observations of the sky between 2011-05-13 and 2018-10-14.
- The data sample had altogether ~1.5 million neutrino candidate events.

### **GRB data (source list):**

| Selection                                                      | Number of Objects |
|----------------------------------------------------------------|-------------------|
| Total observed GRBs in GRBWeb                                  | 6399              |
| and within the time period : $2011-05-27 - 2018-09-30$         | 2270              |
| and within the declination region: $[-85^{\circ},+85^{\circ}]$ | 2260              |
| and within estimated angular uncertainty: $< 0.2^{\circ}$      | 733               |
| and within estimated angular uncertainty: $<0.05^{\circ}$      | 686               |

# Analysis approach

- My analysis searches for neutrino correlations beyond the prompt phase.
- Each GRB is fit separately.
- The use of the time window parameter differs to perform two independent searches:
  - Precursor search: searching for neutrino correlations up to 14 days prior to start of prompt phase.
  - **Prompt+afterglow search:** searching for neutrino correlations **up to 14 days <u>after</u>** the start of prompt phase.



We expect to find a small number of neutrinos correlated with GRBs, just due to chance alignment of background neutrinos. We take this into account in the final step of the analysis.

# Steps of the analysis



### Result table for precursor search (top 20 GRBs)

| GRB information |                 |        |              |                     |          |              |             | Fit result     | S                       |       |            |
|-----------------|-----------------|--------|--------------|---------------------|----------|--------------|-------------|----------------|-------------------------|-------|------------|
| GRB Name        | $RA [^{\circ}]$ | Dec[°] | $T_0[MJD]$   | $Fluence[erg/cm^2]$ | redshift | $T_{100}[s]$ | $\hat{n_s}$ | $\hat{\gamma}$ | $\hat{T_w}[\mathbf{s}]$ | TS    | p-value    |
| GRB150202A      | 39.23           | -33.15 | 57055.965301 |                     | _        | 25.70        | 1.00        | 4.00           | 3.367e + 03             | 16.37 | 6.12e-04   |
| GRB180721A      | 347.71          | 4.86   | 58320.463056 | —                   | —        | 47.60        | 1.00        | 1.84           | 1.542e + 04             | 12.46 | 2.73e-03   |
| GRB140301A      | 69.56           | -34.26 | 56717.642234 | —                   | 1.42     | 31.00        | 1.96        | 2.15           | 7.615e + 05             | 11.51 | 4.38e-03   |
| GRB141220A      | 195.07          | 32.15  | 57011.251986 | 5.34 e-06           | 1.32     | 7.62         | 1.00        | 4.00           | 2.473e + 02             | 11.19 | 5.39e-03   |
| GRB111126A      | 276.06          | 51.46  | 55891.790069 | _                   | —        | 0.80         | 1.84        | 4.00           | 3.556e + 03             | 10.65 | 6.22 e- 03 |
| GRB151205A      | 229.29          | 35.74  | 57361.656944 | 1.84e-06            | —        | 62.80        | 1.00        | 3.80           | 6.390e + 03             | 10.10 | 8.15e-03   |
| GRB170531B      | 286.88          | -16.42 | 57904.918160 | _                   | 2.37     | 164.13       | 2.70        | 2.59           | 5.077e + 05             | 9.35  | 9.17e-03   |
| GRB171007A      | 135.60          | 42.82  | 58033.498356 | 3.03e-07            | —        | 105.00       | 2.63        | 2.47           | 2.963e + 04             | 9.72  | 9.94e-03   |
| GRB160310A      | 98.82           | -7.22  | 57457.015943 | 5.25e-06            | —        | 26.60        | 0.99        | 1.83           | 4.455e + 04             | 8.59  | 1.19e-02   |
| GRB180720B      | 0.53            | -2.92  | 58319.598368 | 2.99e-04            | 0.65     | 53.90        | 3.59        | 2.32           | 7.435e + 05             | 8.89  | 1.50e-02   |
| GRB160422A      | 42.09           | -57.88 | 57500.499303 | 8.80e-05            | —        | 14.12        | 0.99        | 2.12           | 4.246e + 04             | 7.16  | 1.96e-02   |
| GRB140619A      | 27.11           | -39.26 | 56827.485127 | —                   | —        | 233.90       | 0.98        | 2.54           | 8.499e + 04             | 6.21  | 2.47e-02   |
| GRB160629A      | 4.82            | 76.98  | 57568.930208 | 1.31e-05            | 3.33     | 76.38        | 3.17        | 3.40           | 3.327e + 05             | 7.06  | 2.54e-02   |
| GRB131014A      | 100.30          | -19.10 | 56579.214583 | 1.98e-04            | _        | 4.36         | 0.98        | 3.31           | 6.707e + 03             | 6.38  | 2.60e-02   |
| GRB151027A      | 272.49          | 61.35  | 57322.165556 | 1.41e-05            | 0.81     | 129.69       | 0.99        | 2.90           | 4.185e + 03             | 7.59  | 2.70e-02   |
| GRB131218A      | 113.80          | -64.72 | 56644.878843 | —                   | —        | —            | 0.98        | 2.97           | 3.542e + 05             | 5.84  | 2.79e-02   |
| GRB120722A      | 230.50          | 13.25  | 56130.537106 | —                   | 0.96     | 42.40        | 2.42        | 2.51           | 3.223e + 05             | 7.39  | 2.87e-02   |
| GRB120711B      | 331.69          | 60.02  | 56119.132669 | —                   | —        | 60.00        | 2.52        | 2.59           | 7.865e + 04             | 7.31  | 2.88e-02   |
| GRB150627A      | 117.47          | -51.49 | 57200.182905 | 1.80e-04            | —        | 70.57        | 0.98        | 1.73           | 8.081e + 05             | 5.58  | 2.92e-02   |
| GRB131030A      | 345.07          | -5.37  | 56595.872428 | —                   | 1.29     | 41.29        | 0.99        | 3.81           | 3.250e + 03             | 7.07  | 2.98e-02   |

### Precursor search results



## Final post trial significance



## Prompt+Afterglow results



(k is the index of each GRB when ranked by p-value)

### Final post trial significance



### Next step: Towards population limits



Different scenarios can be excluded at 90% CL. A scenario where you expect e.g.:

~ 2 neutrino-bright GRBs

(each > 4- $\sigma$ ), or

- ~ 3 GRBs at > 3- $\sigma$ , or
- ~ 10 GRBs at > 2- $\sigma$

**Next step:** relate physical models of source populations (neutrino luminosity, cosmological distribution of sources) to these scenarios to constrain the models.

# Thank you!



# Performance testing

### **Box injection**

### **Pulse injection**





### Performance testing: Pulse injection



# Summary of analysis





- Search for neutrino emissions from GRBs.
- General point source search using a flat time pdf (Box profile).
- Unbinned maximum likelihood
   method.
- For a given GRB in the sky, one end of the time window is fixed and other end of the time window 'Tw' is fitted according to the data, together with the parameters  $n_s$ and  $\gamma$  (spectral index in range  $1 < \gamma < 4$ ).



Kunal Deoskar

### Some details regarding the selected GRBs for the analysis.

| Selection                                                 | Number of Objects |
|-----------------------------------------------------------|-------------------|
| Total observed GRBs in GRBWeb within the GFU data period  | 2270              |
| GRBs selected for our analysis                            | 733/2270          |
| GRBs in selection with measured redshifts                 | 201/733           |
| GRBs in selection with measured fluence                   | 289/733           |
| GRBs in selection with measured T90,redshifts and fluence | 86/733            |
| GRBs in selection with measured T90                       | 680/733           |
| ${\rm Short}{\rm GRBs}(T_{90}<2{\rm s})$                  | 66/680            |
| ${ m Long~GRBs}~(T_{90}>2{ m s})$                         | 614/680           |

### **Distribution of Tw fitted for the Precursor result**



Kunal Deoskar

### Distribution of Tw fitted for the Prompt+Afterglow result



Kunal Deoskar

## Distribution of top k values obtained from 100 scrambled datasets



Kunal Deoskar

### Result table for prompt+afterglow search (top 20 GRBs)

| GRB information |        |        |              |                     |          | Fit results  |             |                |                         |       |          |
|-----------------|--------|--------|--------------|---------------------|----------|--------------|-------------|----------------|-------------------------|-------|----------|
| GRB Name        | RA[°]  | Dec[°] | $T_0[MJD]$   | $Fluence[erg/cm^2]$ | redshift | $T_{100}[s]$ | $\hat{n_s}$ | $\hat{\gamma}$ | $\hat{T_w}[\mathbf{s}]$ | TS    | p-value  |
| GRB170318A      | 305.67 | 28.41  | 57830.508287 | _                   | _        | 133.70       | 2.91        | 3.52           | 4.267e + 04             | 16.13 | 6.11e-04 |
| GRB140607A      | 86.37  | 18.90  | 56815.717720 |                     | _        | 109.90       | 1.00        | 1.53           | 2.602e + 04             | 15.02 | 9.35e-04 |
| GRB141121A      | 122.67 | 22.22  | 56982.160220 | —                   | 1.47     | 549.90       | 1.17        | 1.38           | 1.040e + 06             | 13.28 | 1.81e-03 |
| GRB140114A      | 188.52 | 27.95  | 56671.498380 |                     | 3.00     | 139.70       | 1.00        | 1.14           | 8.478e + 04             | 12.20 | 3.62e-03 |
| GRB120911A      | 357.98 | 63.10  | 56181.297564 | 2.34e-06            | _        | 22.02        | 1.00        | 2.49           | 1.219e+02               | 11.77 | 3.86e-03 |
| GRB140930B      | 6.35   | 24.29  | 56930.820625 | —                   | —        | 0.84         | 1.00        | 4.00           | 6.691e + 03             | 10.34 | 8.08e-03 |
| GRB150317A      | 138.98 | 55.47  | 57098.182431 | —                   | —        | 23.29        | 2.76        | 4.00           | 6.264e + 04             | 9.79  | 9.12e-03 |
| GRB160827A      | 179.27 | -29.18 | 57627.657465 | —                   | —        | 13.30        | 1.00        | 4.00           | 1.426e + 05             | 8.91  | 9.12e-03 |
| GRB180418A      | 170.12 | 24.93  | 58226.280625 | 5.90e-07            | —        | 2.78         | 1.81        | 1.78           | 9.165e + 04             | 9.85  | 9.65e-03 |
| GRB130313A      | 236.41 | -0.37  | 56364.672350 | —                   | —        | 0.26         | 2.81        | 1.96           | 4.446e + 05             | 9.51  | 1.29e-02 |
| GRB131202A      | 344.05 | -21.66 | 56628.633409 | 8.17e-07            | 7.50     | 32.90        | 0.99        | 4.00           | 1.315e+05               | 8.01  | 1.29e-02 |
| GRB170728B      | 237.98 | 70.12  | 57962.960630 | 4.02e-06            | —        | 48.29        | 1.90        | 2.41           | 1.080e + 04             | 8.63  | 1.42e-02 |
| GRB170604A      | 342.66 | -15.41 | 57908.797801 | —                   | 1.33     | 26.70        | 0.99        | 4.00           | 1.103e+05               | 7.80  | 1.52e-02 |
| GRB140730A      | 56.40  | -66.55 | 56868.822118 | _                   | _        | 41.30        | 0.99        | 3.94           | 2.110e+04               | 7.68  | 1.60e-02 |
| GRB160411A      | 349.36 | -40.24 | 57489.061701 | 2.25e-07            | _        | 1.26         | 0.99        | 2.79           | 4.832e + 04             | 7.47  | 1.63e-02 |
| GRB150725A      | 220.42 | -2.42  | 57228.364056 | _                   | _        | _            | 1.00        | 4.00           | 7.339e + 02             | 8.86  | 1.72e-02 |
| GRB180823A      | 210.36 | 14.89  | 58353.794815 | _                   | _        | 80.30        | 1.56        | 4.00           | 2.689e + 04             | 8.42  | 1.94e-02 |
| GRB150912A      | 248.43 | -20.98 | 57277.442708 | 3.43e-06            | _        | 34.82        | 0.99        | 3.48           | 1.423e + 05             | 6.65  | 2.04e-02 |
| GRB160221A      | 232.08 | -28.45 | 57439.992847 | 1.75e-06            | _        | 12.95        | 0.99        | 1.84           | 7.981e + 04             | 6.47  | 2.20e-02 |
| GRB160424A      | 319.49 | -60.41 | 57502.492429 | 2.73e-06            | _        | 7.46         | 1.82        | 1.95           | 6.239e + 05             | 6.49  | 2.35e-02 |

### Results for well-known / interesting GRBs

- GRB180720B: The GRB detected by HESS in July 2018.
- GRB130427A: Exceptionally bright GRB detected in 2013.

#### Precursor search results:

| GRB information |                |        |              |                     |          |              |             |                | Fit resul               | ts   |          |
|-----------------|----------------|--------|--------------|---------------------|----------|--------------|-------------|----------------|-------------------------|------|----------|
| GRB Name        | $RA[^{\circ}]$ | Dec[°] | $T_0[MJD]$   | $Fluence[erg/cm^2]$ | redshift | $T_{100}[s]$ | $\hat{n_s}$ | $\hat{\gamma}$ | $\hat{T_w}[\mathbf{s}]$ | TS   | p-value  |
| GRB180720B      | 0.53           | -2.92  | 58319.598368 | 2.99e-04            | 0.65     | 53.90        | 3.59        | 2.32           | 7.435e + 05             | 8.89 | 1.50e-02 |
| GRB130427A      | 173.14         | 27.70  | 56409.324375 | 2.46e-03            | 0.34     | 213.83       | 0.00        | _              | _                       | 0.00 | 1.00e+00 |

### • Prompt+afterglow search results:

| GRB information |                |        |              |                     |          |              |             |                | Fit r                   | esults |          |
|-----------------|----------------|--------|--------------|---------------------|----------|--------------|-------------|----------------|-------------------------|--------|----------|
| GRB Name        | $RA[^{\circ}]$ | Dec[°] | $T_0[MJD]$   | $Fluence[erg/cm^2]$ | redshift | $T_{100}[s]$ | $\hat{n_s}$ | $\hat{\gamma}$ | $\hat{T_w}[\mathbf{s}]$ | TS     | p-value  |
| GRB180720B      | 0.53           | -2.92  | 58319.598368 | 2.99e-04            | 0.65     | 53.90        | 0.00        | _              | —                       | 0.00   | 1.00e+00 |
| GRB130427A      | 173.14         | 27.70  | 56409.324375 | 2.46e-03            | 0.34     | 213.83       | 0.00        | —              | —                       | 0.00   | 1.00e+00 |

## Time integrated flux upper limits on interesting GRBs



## Time integrated flux upper limits on interesting GRBs





Kunal Deoskar

 $\gamma =$  2, dec = 5 deg 6  $\gamma=$  2, dec = 45 deg = 2, dec = -45 deg  $\gamma=$  3, dec = 5 deg 5  $\gamma=$  3, dec = 45 deg  $\gamma=$  3, dec = -45 deg Number of Events 1 day 14 days 100 s 4 3 2 1 10<sup>3</sup> 105 106 10<sup>1</sup> 10<sup>2</sup> 10<sup>4</sup> 10<sup>0</sup>  $\Delta$  T (s)

Discovery potential for 2- $\sigma$ , GFU data

Kunal Deoskar





Kunal Deoskar



Kunal Deoskar



Figure 1: The  $5\sigma$  discovery potential (signal required for  $5\sigma$  detection in 50% of trials) and the sensitivity (90% CL median upper limit) for IC-86I shown in terms of the fluence (a) and the mean number of signal events (b) for a fixed source at +16° declination (solid lines) with an  $E^{-2}$  spectrum. The corresponding lines for the time integrated search are also shown. The time dependent search improves over the time integrated for flaring sources when solid lines become lower than dashed ones.

Ref: arXiv:1503.00598v2



### Kunal Deoskar