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WHY (A FIRST ORDER) PHASE TRANSITION?

Two reasons:  

• Necessary for generating baryon 
asymmetry: 
       1) Baryon number violation 
         2) Charge and Charge-Parity violation  
         3) Departure from thermal equilibrium 

• First order phase transitions give strong 
gravitational wave signals

Transition from one vacuum (+symmetries) to another 
broken phase (+other symmetries). 

First order  > STRONG 

Second order > SOFT

V(ϕ)

ϕ



IS IT A PROBLEM? 
GAUGE INVARIANCE AND THE EFF. POTENTIAL

It is well known that the effective potential approach is gauge dependent to some extent.  

• The shape of the potential might depend on the gauge choice 

• The location of minima might also depend on gauge choice 

• The depth of minima does not depend on gauge choice



IS IT A PROBLEM? 
GAUGE INVARIANCE AND THE EFF. POTENTIAL

Things are (as usual) much simpler at lower orders, and one can say e.g. that:  

• At one-loop all gauge dependence manifests itself in the Goldstone boson masses! 

• If one works at T = 0, then as long as you are minimally careful, all is well. Just be sure 
Goldstone masses vanish.  

•At T ≠ 0, resummations have to be included to improve the perturbative expansion. Then 
more care has to be taken with power counting to get the Goldstone masses to be 0.



Without careful power counting, phase transitions can even 
disappear for some gauge choices! 

Power counting depends on the parameters of your theory! 
It is not a unique recipe 

Incredibly relevant for > 1 loop 

RESTORING GAUGE INVARIANCE: 
PROPER POWER COUNTING J
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In the SM, φ(1) = 0 is the symmetric phase, while φ(2) ≡ φmin(TC) characterizes the broken

phase. In the standard analysis, (2.19) and (2.20) are simultaneously solved to obtain both

TC and φmin(TC). Their ratio is compared to the bound (1.6) required for preservation of

the baryon asymmetry.

It is straightforward to see that näıvely inverting these equations at one-loop order

leads to a gauge-dependent estimate of the sphaleron rate. To that end, we consider the

high-T approximation to the full effective potential. The thermal bosonic function JB(z2)

admits a high-temperature expansion [26]

JB(z2) = −π4

45
+

π2

12
z2 − π

6
(z2)3/2 − 1

32
z4 ln z2 + . . . , (2.21)

with which the effective potential (2.18) may be cast as a polynomial in φ:

Veff(φ, T ) = D(T 2 − T 2
0 )φ2 − ETφ3 +

λ̄

4
φ4 + . . . . (2.22)

The coefficients D, T 2
0 , E and λ̄ depend on the parameters of the underlying model. In

the SM, the coefficients are [37]

D =
1

32
(g2

1 + 3g2
2 + 4y2

t + 8λ) ,

T 2
0 = µ2/2D ,

E =
3− ξ3/2

96π

(

2g3
2 + (g2

1 + g2
2)

3/2
)

,

and λ̄ = λ + (ξ-dep. log) ,

(2.23)

where yt is the top yukawa coupling; g1 and g2 are the U(1) and SU(2)L gauge coupling

constants; and the scalar quartic self coupling λ̄ picks up a logarithmic ξ-dependence.

We observe that the coefficient of the quadratic term is gauge-independent, as one

expects based on the gauge-independence of thermal masses (see e.g., ref. [38]). In ap-

pendix C, we explicitly demonstrate this property for the general model. As we will discuss

below, we take advantage of this property to define the high-temperature effective theory

used to obtain a gauge-independent sphaleron scale.

Unfortunately, the coefficient E is not only gauge-dependent but strongly so. For

example, by choosing ξ = 32/3 the E-coefficient can be made to vanish, and the barrier

necessary for a first order phase transition is permanently absent. One might hope that

the ratio φmin(TC)/TC removes this gauge-dependence. However it is straightforward to

show that this hope is not realized. A simple calculation gives (for a pedagogical review,

see ref. [9])
φmin(TC)

TC
=

2E

λ̄
, (2.24)

which remains gauge dependent. Hence the standard analysis leads to an unphysical treat-

ment of the BNPC.

In various Standard Model extensions where either new scalar loops or tree-level op-

erators generate large contributions to the cubic term, it is conceivable that the impact of
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Abstract: The electroweak phase transition broke the electroweak symmetry. Pertur-
bative methods used to calculate observables related to this phase transition suffer
from severe problems such as gauge dependence, infrared divergences, and a break-
down of perturbation theory. In this paper we develop robust perturbative tools for
dealing with phase transitions. We argue that gauge and infrared problems are ab-
sent in a consistent power-counting. We calculate the finite temperature effective
potential to two loops for general gauge-fixing parameters in a generic model. We
demonstrate gauge invariance, and perform numerical calculations for the Standard
Model in Fermi gauge.

1 Introduction

The electroweak symmetry appears exact in the early universe, but not in our current day
and age. As the universe expands and cools down the Higgs field develops a vacuum-
expectation-value (VeV)—breaking the symmetry. There is a phase transition from a sym-
metric to a broken phase.

Although well established in the Standard Model, the electroweak phase transition re-
mains elusive. It is, as yet, unknown when and how the transition took place; if it was
violent, or calm; first-order, or continuous. Continuous transitions are rather innocuous
compared to their first-order cousins. Indeed, a first-order phase transition is a turbulent
and violent affair that likely has far-reaching consequences for the universe’s development.
Such transitions are part and parcel for understanding the observed matter-antimatter
asymmetry [1]. Furthermore, gravitational waves from a strong phase transition reverber-
ate throughout the universe and might be picked up by next-generation experiments [2].
Describing these phenomena goes hand-in-hand with understanding phase transitions.

Both perturbative and lattice methods accomplish this task; both methods with their
fair share of virtues and vices.

* andreas.ekstedt@ipnp.troja.m�.cuni.cz
� johan.lofgren@physics.uu.se
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tribution �2
1 . But these terms are washed away—the temperature scaling pushed them

higher in the expansion.
It turns out that resuming V

0
1 is equivalent to including the aforementioned ~h terms

lost by the scaling. To wit, resuming a mass X in V
0

1 demands a subtraction to avoid over-
counting:

X = X + T
2(⇧X )21, (2.33)

V
0

1 ! V1
0 � 2

T
2(⇧X )21@X V1(�), (2.34)

with similar subtractions at higher orders. To sum it up, V1
0
��
�0(T )

is gauge invariant, and
so are the remaining 2-loop terms after subtracting diagrams.

In this way all the gauge dependence of T
2
V

2
2 is cancelled in two steps. The resumma-

tion of V
0

1 removes the first chunk. And resumming at two loops (T2
V

2
2 + . . .! V2

2), to-
gether with the ~h expansion, removes the last bit since Goldstone masses vanish at �0(T ).

To be clear, we advocate that the scalar masses should always be resummed, beyond
their contribution to the leading order potential. This is demanded by gauge invariance.
Gauge bosons are another matter, because only 3D-longitudinal zero-modes have a large
self-energy. Hence only zero-modes of vector bosons should be resummed. We give an ex-
tended discussion about how to resum vector bosonmasses at higher orders in appendix C.

3 Phase transitions

Whereas the previous section delineated how the perturbative expansion of the effective
potential is reshuffled with the scaling T ⇠ 1/

p
~h, this section applies these results to

phase transitions, both first- and second-order.
To make the discussion lucid, focus on the generic potential

V0(�) =
m

2

2
�2 +

�

4
�4, (3.1)

with m
2 < 0, � > 0.

3.1 Second-order transition

Consider first a second-order transition. With the scaling T ⇠ 1/
p
~h the energy is

Vmin =
¶�

V0 + T
2
V

2
1

�
+
p
~hT V

1
1 (3.2)

+~h
Ç

T
2
V

2
2 + V

0
1 �
X

X

⇧X@X V
0

1 � T
2 (�1/2(T ))2

2

�
@ 2

V0 + T
2@ 2

V
2

1

�å
+ . . .

´���
�0(T )

.

The leading-order term
�
V0 + T

2
V

2
1

�
determines the temperature dependent VeV �0(T ).

Terms in T
2
V

2
1 are gauge invariant and are of the form ⇠ e

2�2
T

2 for some coupling e [5].
So all that changes for finite T is m

2! m
2
eff(T ). The transition occurs at the temperature

where m
2
eff(T ) changes sign: m

2
eff(T2nd) = 0. This is a second-order transition.

93.2 First-order transition

Let’s for a moment forget everything about proper power-counting and just try to naively
describe a first-order transition, where the minimum abruptly changes from non-zero to
zero for some temperature Tc . This requires a barrier to develop between the two minima.
To be concrete, consider a high temperature expansion in the Abelian Higgs model. For
high temperatures the potential is approximately

V (�)⇠ �m
2�2 + T

2�2(e2 +�)� e
3
T�3 +��4. (3.3)

Following [8], these various terms have to balance each other for a barrier to develop. The
balance occurs if ��2 ⇠ e

3
T� ⇠ (�m

2 + T
2
e

2 +�T
2)⌘ m

2
eff(T ), or

� ⇠ e
3

�
T & m

2
eff(T )⇠

e
6

�
T

2. (3.4)

So does this scaling always work? No. It depends on the couplings: vector bosons’ thermal
masses, ⇠ e

2
T

2, dominate tree-level ones if � ⇠ e
2, which would break any semblance of

a power-counting.≥
A counting like � ⇠ e

4—as in the Coleman-Weinberg model—is likewise dicey. To wit
this counting implies e� ⇠ T which invalidates the high-temperature expansion. To let �
scale as higher powers of e will only worsen the problem, and lower powers than 2 will
similarly break the perturbative expansion. This leaves only one option [8],

� ⇠ e
3 : � ⇠ T & m

2
eff(T )⇠ e

3
T

2 & T ⇠ 1
e

. (3.5)

So we should really be counting powers of e, and be fastidious about the power-counting.
In the end the first-order scaling is a hybrid between a Coleman-Weinberg-like scaling
(pushes terms up in order) and the second-order scaling (drags terms down to lower
orders).

There will be infinite towers of diagrams at each order in the perturbative expansion,
just as for the second-order scaling. Though note that scalar masses now scale differently.
For example, the resummedGoldstonemass scales as G ⇠ m

2
eff(T )⇠ ~h1/2. This implies that

previously sub-leading Goldstone self-energy terms of order T~h1/2 must now be resummed.
So resummed scalar masses are X = X +T

2⇧2
X
+T⇧1

X
, where only leading order terms are

included in ⇧1
X
. This is quite natural since VLO includes order T and T

2 terms; inherited
by scalars through H = @ 2

VLO, G = @ VLO/�. This does not apply to gauge bosons since
their masses scale as before.

3.2.1 First-order counting and gauge dependence
The above discussion disregarded everything that had to do with gauge symmetry and
further complications from the power counting. So it may not be surprising that a naive
application of this method is gauge dependent. The effect is particularly transparent in R⇠

gauges.

3 This does not mean that � ⇠ e
2 is in general inconsistent—the scaling is �ne when considering second-order

transitions. However, nothing can—in perturbation theory—be said about �rst-order transitions if � ⇠ e
2.
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With proper power counting, one can write things 
in a gauge invariant way.  

Not every scaling leads to first order PT. 

Combined with resummation of finite 
temperature corrections, it gives a good picture 
of PTs. 

Done for the SM. A better picture emerged but 
confirms that there is no first order PT in the SM 
with the right Higgs mass.  

 λ small = tiny mass.

The R⇠ effective potential is schematically

V (�)⇠ �m
2�2 +��4

+~h
�
T

2(�+ e
2)� 3e

3
T�3 + ⇠3/2

e
3�3

T � (G + ⇠e
2�2)3/2T + . . .
�
+ . . . , (3.6)

G ⇠ �m
2 + e

2
T

2 + e
3
T� +��2, (3.7)

where the Goldstone’s zero-mode has been resummed.
The development of a barrier required for a first-order transition is driven by terms

proportional to e
3
T�3. Note that these terms vanish for ⇠ = 32/3. So the gauge depen-

dence is no paltry effect. Not only does the potential depend on ⇠, the very nature of the
phase-transition is extremely sensitive of ⇠.

The situation is alleviated with a proper power-counting. Consider the first-order tran-
sition scaling � ⇠ e

3, m
2
eff(T )⇠ e

3
T

2, T ⇠ 1
e
. A new minimum develops when the quartic

term competes with the mass term: � ⇠ T . Now, the Goldstone mass is of order G ⇠ e
3
T

2,
while the photon mass is of order e

2�2 ⇠ e
2
T

2. This means that the gauge dependent
terms (to leading order) cancel, leaving

(G + ⇠e
2�2)3/2T � ⇠3/2

e
3�3

T =
3
2

T

p
⇠e�G ⇠ e

4
T

4. (3.8)

So m
2
eff(T )�

2 + ��4 ⇠ e
3
T

4 while T G

p
⇠e� ⇠ e

4
T

4. Gauge dependent terms are sub-
leading. What’s more, gauge dependent terms are evaluated at �0(T ), and by definition
vanish after a resummation: G |�0(T ) = 0. Finally, note that (G + ⇠e

2�2)3/2T could only
be expanded because G ⇠ ��2 ⇠ e

3
T

2. This is not true if � ⇠ e
2. This is another sign that

first-order transitions can only be described perturbatively if e
2� �.

3.2.2 Details of the perturbative expansion
Due to its numerous appearances, it is felicitous to use e instead of ~h for counting powers.
So e serves bilaterally as a power and a constant—a powerful constant indeed. Gauge
bosons scale as Z ⇠ e

0, and scalars as H, G ⇠ e. In the Standard Model for example
e ⇠p↵W ⇠ 0.1.

The VeV scaling (� ⇠ T ⇠ e
�1) implies that the leading-order potential scales as V0 ⇠

��4 ⇠ e
�1. Next-to-leading order terms come from T

2
V

2
2 and V

0
1 (with scalars and powers

of lambda pushed to higher orders); these terms scale as e
0. Cracking on, NNLO is solely

due to scalar T V
1

1 terms.� N3LO goes as e and contains terms from T V
1
2, T

2
V

2
2, and T

3
V

3
3.

The potential and VeV are

V (�) = e
�1

VLO(�) + VNLO(�) + e
1/2

VNNLO+ . . . , (3.9)

�min = e
�1�LO+�NLO+ e

1/2�NNLO+ . . . (3.10)

Where �min is calculated order-by-order in e. Mark that a derivative with respect to �
adds a factor of e: @ ⇠ e. So

@ V (�) = @ VLO(�) + e@ VNLO(�) + e
3/2@ VNNLO(�) + . . . , (3.11)

4 Technically there are terms from T
2
V

2
2 , but these all cancel against resummation subtractions.
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We accept the hierarchy between 
EW scale and new physics. SM 
can be thought as an EFT and all 
possible higher dimensional 
operators can be included.  

Think of them as contributions 
that appear à la GFermi, when we 
integrate out particles. 

First step D = 6 operators.  

We can then get right Higgs mass 
with small λ 

SMEFT
FIRST OR SECOND ORDER?
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In this work we present ...

I. INTRODUCTION

Let’s start by considering the dimension 6 operators (in the Warsaw basis) relevant for the Higgs mechanism,

LH = (Dµ�)
†
(Dµ�) + m2

(�†�) � �

2
(�†�)

2

+ C�
(�†�)

3
+ C�⇤

(�†�)⇤(�†�) + C�D
(�†Dµ�)

⇤
(�†Dµ�) . (1)

and after minimization of the classical potential we get that

�vev =

r
m2

�
+

2m3

p
2�5/2

C�
+ O(

1

⇤4
) (2)

To ensure that the Higgs field has a canonically normalized kinetic term, we have to rescale the fields (in the following

all calculation will be kept to first order in the EFT expansion). After the rescaling h ! (1+1/2C�D�vev�C�⇤�2

vev
)H

and G0 ! ZG0�0
(the pseudoscalar Goldstone mode), we get a Lagrangian mass term for the Higgs

m2

H
(�) = �m2

+
1

2
(m2

(C�D � 4C�⇤
) + 3�)�2 � 3

4
(5C�

+ (C�D � 4C�⇤
)�)�4

(3)

and

m2

H
(�vev) = ��2

vev
� (3C� � 2�C�⇤

+
�

2
C�D

)�4

vev
(4)

II. EWPT AND DIMENSION 6 OPERATORS

III. CURRENT BOUNDS

From the fit results in [1] we can already see what the bounds on the relevant coe�cients C�D, C�⇤
, for C�

,

sensitivity in the LHC is limited as it should be measured in double Higgs production. The convention is

C̄ =
v2

⇤2
C 0

= v2C (5)

where C is our convention above and C 0
the typical convention that includes the NP scale explicitly in the denom-

inator.

Translating the results to our conventions, taking v = �vev = 246GeV we get that (roughly)
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Notice that in all our expressions and Feynman rules that follow we use only this vev. As
usual, we next expand the Higgs doublet field around the vacuum,

ϕ =

(
Φ+

1√
2
(v +H + iΦ0)

)

. (3.3)

The Lagrangian bilinear terms of the scalar fields are then given by,

LBilinear
H =

1

2

(
1 +

1

2
CϕDv2 − 2Cϕ!v2

)
(∂µH)2 +

(
1

2
m2 −

3

4
λv2 +

15

8
v4Cϕ

)
H2

+
1

2

(
1 +

1

2
CϕDv2

)
(∂µΦ

0)2 + (∂µΦ
−)(∂µΦ+). (3.4)

By rescaling the fields as

h = ZhH , G0 = ZG0 Φ0 , G± ≡ Φ± , (3.5)

with the constant factors

Zh ≡ 1 +
1

4
CϕDv2 − Cϕ!v2 , (3.6)

ZG0 ≡ 1 +
1

4
CϕDv2 , (3.7)

one obtains the physical Higgs field h and Goldstone fieldsG0, G± with canonically normalized
kinetic terms. The tree-level squared mass of the normalized Higgs field h now reads,

M2
h = 2m2

[
1−

m2

λ2
(
3Cϕ − 4λCϕ! + λCϕD

)]

= λv2 − (3Cϕ − 2λCϕ! +
λ

2
CϕD)v4 . (3.8)

3.2 The gauge sector

The Lagrangian terms which are relevant for gauge boson propagators read,

LEW = −
1

4
W I

µνW
Iµν −

1

4
BµνB

µν + (Dµϕ)
†(Dµϕ)

+ CϕW (ϕ†ϕ)W I
µνW

Iµν + CϕB(ϕ†ϕ)BµνB
µν + CϕWB(ϕ†τ Iϕ)W I

µνB
µν

+ CϕD(ϕ†Dµϕ)
∗(ϕ†Dµϕ) , (3.9)

LQCD = −
1

4
GA

µνG
Aµν +CϕG(ϕ†ϕ)GA

µνG
Aµν , (3.10)

where τ I are the Pauli matrices. Other, potentially relevant operators of the theory, contain-
ing B̃µν , W̃ I

µν and G̃A
µν influence only CP-violating vertices. Their bilinear terms are total

derivatives and do not affect propagators. Therefore, we neglect them in our discussion here.
To simplify the above expressions, it is convenient to introduce “barred” fields and cou-

plings, such as

W̄ I
µ ≡ ZgW I

µ , ḡ ≡ Z−1g g ,
B̄µ ≡ Zg′Bµ , ḡ′ ≡ Z−1g′ g′,

ḠA
µ ≡ ZgsG

A
µ , ḡs ≡ Z−1gs gs ,
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• First order phase 
transition is not a 
rare situation, but it 
wants tiny  λ 

• Points with right 
Higgs mass can be 
found. 

• What about other 
pheno.? 

PHASE TRANSITIONS IN THE SMEFT

NOT 
FINAL



• With the power counting 
that allows a first order 
phase transition, it is still 
possible to stay within 
reasonable pheno. in other 
sectors.  

• We looked (so far) at Higgs 
physics and EWPT.  

•We ”turned on” the 
minimal set of WCs! 

PHASE TRANSITIONS IN THE SMEFT
Fit with EWPT and 

Higgs physics 

NOT FINAL

Higgs Likelihood 

EWPT Likelihood 

Global  



OUTLOOK: DI-HIGGS AS A PROBE?

NOT 
FINAL

• In the SMEFT not only the Higgs mass is affected. The Higgs self-couplings (among many 
other things) change as well.  

• With the power counting (and thus values for WCs and couplings) we need for first order 
PT, what happens to e.g. Di-Higgs production?  

We are thinking about it… 



CONCLUSIONS

NOT 
FINAL

• First order phase transitions are interesting and important for pheno. 

• In the SM alone, not possible to have this. 

• In the SMEFT? It seems like it is. After proper power counting and resummation, that is.  

• The scenario can be probed with other experiments, not just Cosmo.  

• Could be that EWSB comes as a step in more complicated symmetry breaking though! 


