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Abs tract. We  s how th a t fo r a  wide  cla s s  o f E u c lid e a n  s ca la r fie ld e qua tions ,  
th e re  e xis t non -trivia l s o lu tions ,  a n d  the  non -trivia l s o lu tio n  o f lowe s t a c tio n  
is  s phe rica lly s ymme tric .  Th is  fills  a  ga p  in a  re c e n t a na lys is  o f va c u u m  d e c a y 
b y o n e  o f us . 

1. Introduction 

In  the  c o u rs e  o f a  s tu d y o f va c u u m  ins ta b ility [11, o n e  o f us  e n c o u n te re d  the  
d iffe re n tia l e q u a tio n  in fo u r-d im e n s io n a l E u c lid e a n  s pa ce , 

A@ -- U'(rP). (1.1) 

He re  A is  th e  u s ua l E u c lid e a n  La p la c e  o p e ra to r,  U is  a  q u a rtic  p o lyn o m ia l in  the  
s ingle  re a l fie ld  ~, a n d  the  p rim e  d e n o te s  d iffe re n tia tion  with  re s pe c t to  ~b. Th is  
e q u a tio n  a d m itte d  a  trivia l s o lu tion ,  • a  c o n s ta n t.  In  Re f. [1 ],  a  s phe rica lly 
s ym m e tric  n o n -trivia l s o lu tio n  wa s  c o n s tru c te d ,  a n d  it wa s  c o n je c tu re d  th a t th is  
s o lu tio n  h a d  the  lowe s t a c tion  o f a n y n o n -trivia l s o lu tion .  Th e  p u rp o s e  o f th is  
n o te  is  to  s u p p ly the  p ro o f o f th is  con je c tu re .  

Mo re  pre c is e ly, we  p ro ve  tha t,  fo r a  wide  cla s s  o f func tions  U, the  n o n -trivia l 
s o lu tio n  to  E q u a tio n  (1.1) o f s ma lle s t a c tio n  is  ne ce s s a rily s phe rica lly s ymme tric .  
O u r p ro o f is  va lid  for a n y n u m b e r o f E u c lid e a n  d im e n s io n s  g re a te r th a n  two , 
a lth o u g h  the  c la s s  o f a dmis s ib le  U's  d o e s  d e p e n d  u p o n  the  d im e n s io n  1. 

Th e  re m a in d e r o f th is  s e c tion  is  a  s ta te m e n t o f o u r m a in  re s u lt with  s o me  c o m - 
me n ts  o n  its  me a n ing . S e c tions  2 a n d  3 cons is t o f the  p roo f.  

1.1. S ta te m e nt o f  the  The ore m  

De finition. We  will s a y a  re a l fu n c tio n  o f a  s ingle  re a l va ria b le  U(q~) is  a dmis s ib le  
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In QFT, transition processes are possible from higher to lower vacua of the 

potential energy. The energy functional                                                            

admits extrema that are not constant. They describe vacuum decay. They 

satisfy: 

 

                                                    proved that in R4 such solutions are bubbles.  

Then decay width is then easy to write down (though hard to calculate):

FALSE VACUUM QUICK RECAP
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solution, sitting in the false vacuum with energy E. The “bounce”
solution is so named because we see, by energy conservation, that
it starts at x1, rolls down the inverted potential before “bouncing”
off x2 and rolling back. By finding this solution and evaluating its
action, we can compute the rate for tunneling through a barrier.

This argument generalized straightforwardly to many-body
quantum systems, where we use the action

SE[qi(τ )] =
∫

dτ

[

∑

i

1

2

(

dqi
dτ

)2

+W(qi)

]

. (4.6)

With more than one degree of freedom, however, there are
actually an infinite number of paths that qi(τ ) could take when
passing through the barrier, corresponding to an infinite number
of solutions. However, since the decay rate is exponentially
dependent on the action, " ∝ e−SE[qi], it is clear that only
the solution with smallest Euclidean action will contribute
significantly, as this will dominate the decay rate (in other words,
the tunneling takes the “path of least resistance”).

The generalization from amany body system, qi, to a quantum
field theory with scalar field ϕ(x) is then straightforward,

SE[ϕ(x)] =
∫

d4x

[

1

2
∂µϕ∂

µϕ + V(ϕ)

]

. (4.7)

The integral here is over flat four-dimensional Euclidean space,
and note that the opposite sign of the potential leads to an
opposing sign in the equations of motion,

− ∇µ∇µϕ + V ′(ϕ) = 0. (4.8)

Although it is tempting to interpret V(φ) as the potential to
be tunneled through, this is only somewhat true. The analog of
W(qi) in Equation (4.6) is a functional of the field configuration
ϕ(x), given by an integral over three-dimensional space,

U[ϕ(x)] =
∫

d3x

[

1

2
(∇ϕ)2 + V(ϕ)

]

, (4.9)

where ∇ϕ represents the spatial derivative of the field. In
the analogy with quantum mechanics, this term should be
considered part of the potential, as its many body equivalent
is a nearest-neighbor interaction between adjacent degrees of
freedom, qi, qi±1. This means, in particular, while in quantum
mechanics, the particle emerges after tunneling at a point x2 that
has the same potential energy,W(x1) = W(x2), in quantum field
theory, the field emerges lower down the potential V .

In a field theory, the analog of x2 is a field configuration,
ϕ(x), given by slicing the bounce solution at its mid-way point.
This is a nucleated “true-vacuum” bubble, whose decay rate is
determined by the Euclidean action of the bounce solution, ϕB.
As we will see in section 4.7, the dominant Euclidean solutions
haveO(4) symmetry, which means that the bubble nucleates with
O(3, 1) symmetry. This causes it to expand at near the speed
of light, resulting in the space around a nucleation point being
converted to the true vacuum, releasing energy into the bubble
wall. Apart from the destruction that this would unleash, and the

different masses of fundamental particles in the bubble interior,
the result is also gravitational collapse of the bubble (Coleman
and De Luccia, 1980), making its nucleation in our past light-
cone completely incompatible with the trivial observation that
the vacuum has not decayed (yet).

In cosmological applications, but also other areas, it is also
important to consider the effect of thermally induced fluctuations
over the barrier. Brown and Weinberg (2007) describe how
thermal effects can be included in the above argument. At non-
zero temperature, we must integrate over the possible excited
states, and the decay exponent which depends on energy,

T ∝
∫

dEe−βEe−B(E), (4.10)

where B(E) is the (energy dependent) difference in Euclidean
action between the bounce solution and the excited state of
energy E. This integral is dominated by the energy that minimizes
the exponent βE+ B(E), which is easily shown to satisfy

β = 2(τ2(E)− τ1(E)), (4.11)

where τ1, τ2 are the initial and final values in imaginary time
of the (energy dependent) bounce solution. In other words,
the bounce solution is periodic in imaginary time, with period
controlled by the temperature.

In quantum field theory, the decay rate per unit volume
and time of a metastable vacuum decays was first discussed by
Coleman (Coleman, 1977; Callan and Coleman, 1977), and is
given by

" = A exp (−B) , A =
(

B

2π

)2 ∣
∣

∣

∣

det′(S′′[ϕB])

det(S′′[ϕfv])

∣

∣

∣

∣

− 1
2

, (4.12)

where

B = S[ϕB]− S[ϕfv] (4.13)

is the difference between the Euclidean action of a so called
bounce solution ϕB of the Euclidean (Wick rotated) equations
of motion, and the action of the constant solution ϕfv which sits
in the false vacuum. S′′ denotes the second functional derivative
of the Euclidean action of a given solution, and det′ denotes
the functional determinant after extracting the four zero-mode
fluctuations which correspond to translations of the bounce
(these are responsible for the formula giving a decay rate per unit
volume). Precise calculations of the pre-factor A in the Standard
Model were performed in Isidori et al. (2001), and involve
computing the fluctuations around the bounce solution of all
fields that couple to the Higgs. This requires renormalizing the
loop corrections, and also to avoid double-counting, expanding
around the tree-level bounce, rather than the bounce in the loop
corrected potential.

In the gravitational case, the prefactor A is harder to compute.
The main issue is that it includes both Higgs and gravitational
fluctuations, and without a way of renormalizing the resulting
graviton loops, the calculation becomes much harder. Various
attempts have been made to do this using the fluctuations
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and note that the opposite sign of the potential leads to an
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where ∇ϕ represents the spatial derivative of the field. In
the analogy with quantum mechanics, this term should be
considered part of the potential, as its many body equivalent
is a nearest-neighbor interaction between adjacent degrees of
freedom, qi, qi±1. This means, in particular, while in quantum
mechanics, the particle emerges after tunneling at a point x2 that
has the same potential energy,W(x1) = W(x2), in quantum field
theory, the field emerges lower down the potential V .

In a field theory, the analog of x2 is a field configuration,
ϕ(x), given by slicing the bounce solution at its mid-way point.
This is a nucleated “true-vacuum” bubble, whose decay rate is
determined by the Euclidean action of the bounce solution, ϕB.
As we will see in section 4.7, the dominant Euclidean solutions
haveO(4) symmetry, which means that the bubble nucleates with
O(3, 1) symmetry. This causes it to expand at near the speed
of light, resulting in the space around a nucleation point being
converted to the true vacuum, releasing energy into the bubble
wall. Apart from the destruction that this would unleash, and the

different masses of fundamental particles in the bubble interior,
the result is also gravitational collapse of the bubble (Coleman
and De Luccia, 1980), making its nucleation in our past light-
cone completely incompatible with the trivial observation that
the vacuum has not decayed (yet).

In cosmological applications, but also other areas, it is also
important to consider the effect of thermally induced fluctuations
over the barrier. Brown and Weinberg (2007) describe how
thermal effects can be included in the above argument. At non-
zero temperature, we must integrate over the possible excited
states, and the decay exponent which depends on energy,

T ∝
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dEe−βEe−B(E), (4.10)

where B(E) is the (energy dependent) difference in Euclidean
action between the bounce solution and the excited state of
energy E. This integral is dominated by the energy that minimizes
the exponent βE+ B(E), which is easily shown to satisfy

β = 2(τ2(E)− τ1(E)), (4.11)

where τ1, τ2 are the initial and final values in imaginary time
of the (energy dependent) bounce solution. In other words,
the bounce solution is periodic in imaginary time, with period
controlled by the temperature.

In quantum field theory, the decay rate per unit volume
and time of a metastable vacuum decays was first discussed by
Coleman (Coleman, 1977; Callan and Coleman, 1977), and is
given by
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∣
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∣
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where

B = S[ϕB]− S[ϕfv] (4.13)

is the difference between the Euclidean action of a so called
bounce solution ϕB of the Euclidean (Wick rotated) equations
of motion, and the action of the constant solution ϕfv which sits
in the false vacuum. S′′ denotes the second functional derivative
of the Euclidean action of a given solution, and det′ denotes
the functional determinant after extracting the four zero-mode
fluctuations which correspond to translations of the bounce
(these are responsible for the formula giving a decay rate per unit
volume). Precise calculations of the pre-factor A in the Standard
Model were performed in Isidori et al. (2001), and involve
computing the fluctuations around the bounce solution of all
fields that couple to the Higgs. This requires renormalizing the
loop corrections, and also to avoid double-counting, expanding
around the tree-level bounce, rather than the bounce in the loop
corrected potential.

In the gravitational case, the prefactor A is harder to compute.
The main issue is that it includes both Higgs and gravitational
fluctuations, and without a way of renormalizing the resulting
graviton loops, the calculation becomes much harder. Various
attempts have been made to do this using the fluctuations
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and De Luccia, 1980), making its nucleation in our past light-
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thermal effects can be included in the above argument. At non-
zero temperature, we must integrate over the possible excited
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where B(E) is the (energy dependent) difference in Euclidean
action between the bounce solution and the excited state of
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the exponent βE+ B(E), which is easily shown to satisfy
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where τ1, τ2 are the initial and final values in imaginary time
of the (energy dependent) bounce solution. In other words,
the bounce solution is periodic in imaginary time, with period
controlled by the temperature.

In quantum field theory, the decay rate per unit volume
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given by
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of motion, and the action of the constant solution ϕfv which sits
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fields that couple to the Higgs. This requires renormalizing the
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around the tree-level bounce, rather than the bounce in the loop
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In the gravitational case, the prefactor A is harder to compute.
The main issue is that it includes both Higgs and gravitational
fluctuations, and without a way of renormalizing the resulting
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ϕ(x), given by slicing the bounce solution at its mid-way point.
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haveO(4) symmetry, which means that the bubble nucleates with
O(3, 1) symmetry. This causes it to expand at near the speed
of light, resulting in the space around a nucleation point being
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wall. Apart from the destruction that this would unleash, and the

different masses of fundamental particles in the bubble interior,
the result is also gravitational collapse of the bubble (Coleman
and De Luccia, 1980), making its nucleation in our past light-
cone completely incompatible with the trivial observation that
the vacuum has not decayed (yet).

In cosmological applications, but also other areas, it is also
important to consider the effect of thermally induced fluctuations
over the barrier. Brown and Weinberg (2007) describe how
thermal effects can be included in the above argument. At non-
zero temperature, we must integrate over the possible excited
states, and the decay exponent which depends on energy,
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where B(E) is the (energy dependent) difference in Euclidean
action between the bounce solution and the excited state of
energy E. This integral is dominated by the energy that minimizes
the exponent βE+ B(E), which is easily shown to satisfy

β = 2(τ2(E)− τ1(E)), (4.11)

where τ1, τ2 are the initial and final values in imaginary time
of the (energy dependent) bounce solution. In other words,
the bounce solution is periodic in imaginary time, with period
controlled by the temperature.

In quantum field theory, the decay rate per unit volume
and time of a metastable vacuum decays was first discussed by
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given by
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of motion, and the action of the constant solution ϕfv which sits
in the false vacuum. S′′ denotes the second functional derivative
of the Euclidean action of a given solution, and det′ denotes
the functional determinant after extracting the four zero-mode
fluctuations which correspond to translations of the bounce
(these are responsible for the formula giving a decay rate per unit
volume). Precise calculations of the pre-factor A in the Standard
Model were performed in Isidori et al. (2001), and involve
computing the fluctuations around the bounce solution of all
fields that couple to the Higgs. This requires renormalizing the
loop corrections, and also to avoid double-counting, expanding
around the tree-level bounce, rather than the bounce in the loop
corrected potential.

In the gravitational case, the prefactor A is harder to compute.
The main issue is that it includes both Higgs and gravitational
fluctuations, and without a way of renormalizing the resulting
graviton loops, the calculation becomes much harder. Various
attempts have been made to do this using the fluctuations
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discussed in section 4.5 (see Dunne and Wang, 2006; Lee and
Weinberg, 2014; Koehn et al., 2015 for example), but a full
description, especially for the Standard Model case, is not yet
available.

In most cases, it is reasonable to estimate the prefactorA using
dimensional analysis. Because A has dimension four, one would
expect

A ∼ µ4, (4.14)

where µ the characteristic energy scale of the instanton solution.
Due to the exponential dependence on the decay exponent, B, this
will not lead to large errors, and therefore we will use this result
in the absence of more accurate estimates.

4.2. Asymptotically Flat Spacetime at Zero
Temperature
In flat Minkowski space, the bounce solution corresponds to a
saddle point of the Euclidean action,

S[ϕ] =
∫

d4x

[

1

2
∂µϕ∂

µϕ + V(ϕ)

]

, (4.15)

with one negative eigenvalue (see section 4.5). Since Equation
(4.12) depends exponentially on the bounce action, only the
lowest action bounce solutions will contribute. In flat space,
it is always the case that the lowest action solution has O(4)
symmetry (Coleman et al., 1978). This means that the equations
of motion for the bounce can be reduced to

ϕ̈ + 3

r
ϕ̇ − V ′(ϕ) = 0, (4.16)

subject to the boundary conditions ϕ̇(0) = 0 and ϕ(r → ∞) →
ϕfv. These ensure that the bounce action is finite and thus gives
non-zero contribution to the decay rate. There are always trivial
solutions corresponding to the minima of the potential V(ϕ), but
they do not contribute to vacuum decay because they have no
negative eigenvalues.

For example, in a theory with a constant negative quartic
coupling, that is,

V(ϕ) = −|λ|ϕ
4

4
, (4.17)

there exists the Lee-Weinberg or Fubini bounce (Fubini, 1976;
Lee and Weinberg, 1986). This is a solution of the form:

ϕLW(r) =

√

2

|λ|
2rB

r2B + r2
, (4.18)

where the arbitrary parameter rB characterizes the size of the
bounce (and thus the nucleated bubble). This arbitrary parameter
appears in the theory because the potential Equation (4.17) is
conformally invariant, and thus bounces of all scales contribute
equally with action

S[ϕLW] = 8π2

3|λ|
. (4.19)

In fact, similar bounces contribute approximately in the
Standard Model, where the running of the couplings breaks this
approximate conformal symmetry, so that bounces of order the
scale at which λ is most negative (which is the minimum of the
λ(µ) running curve) dominate the decay rate (Isidori et al., 2001).

The complete calculation would also include gravity, and
would therefore involve finding the corresponding saddle point
of the action

S[ϕ, gµν] =
∫

d4x

[

1

2
∇µϕ∇µϕ + V(ϕ)−

M2
P

2
R

]

, (4.20)

where R is the Ricci scalar. The leading gravitational correction
to Equation (4.19) is Isidori et al. (2008)

&Sgravity =
256π3

45(rBMPλ)2
. (4.21)

Another approach is to solve the bounce equations numerically,
which makes it possible to use the exact field and Einstein
equations and the full effective potential. The difference is a
second order correction (Isidori et al., 2008). Using the tree-level
RGI effective potential (2.23), the full numerical result including
gravitational effects for Mt = 173.34GeV, Mh = 125.15GeV,
αS(Mz) = 0.1184 and minimal coupling ξ = 0 is Rajantie and
Stopyra (2017)

Bgrav = 1808.3. (4.22)

A non-minimal value of the Higgs curvature coupling ξ changes
the action and the shape of the bounce solution (and thus the
scale that dominates tunneling) (Isidori et al., 2008; Czerwinska
et al., 2016; Rajantie and Stopyra, 2017; Salvio et al., 2016;
Czerwinska et al., 2017). Figure 5 shows the bounce action
B as a function of ξ , computed numerically in Rajantie and
Stopyra (2017). As the plot shows, the action is smallest near the
conformal value ξ = 1/6. For ξ ≈ 1/6, the result agrees well with
the perturbative calculation (Salvio et al., 2016),

&Sgravity =
32π2(1− 6ξ )2

45(rBMPλ)2
. (4.23)

For comparison, for the same parameters, the numerically
computed decay exponent in flat space is (Rajantie and Stopyra,
2017)

Bflat = 1805.8, (4.24)

which is very close to the full gravitational result with the
conformal coupling ξ = 1/6. The analytical approximation
(4.19) using µmin = 2.79× 1017 GeV gives

S[ϕLW] = 1804.5. (4.25)

Calculations of the prefactor A show that the decay rate (4.12) is
well approximated by Isidori et al. (2001)

) ∼ µ4
mine

−B ∼ 10−716 GeV4, (4.26)
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Using the approximation of constant negative λ, the action is
Arnold and Vokos (1991)

B(T) =
Esph(T)

T
≈ 18.9

γ

|λ|
. (4.33)

Because γ " 1, this is smaller than the zero-temperature action
(4.19). Therefore the net effect of the non-zero temperature
is to increase the vacuum decay rate compared to the zero-
temperature case.

More accurately, the sphaleron solutions have been calculated
numerically in Delle Rose et al. (2016) and Salvio et al. (2016). At
high temperatures T ! 1016 GeV, the action is roughly

B(T ! 1016 GeV) ∼ 300. (4.34)

When the temperature decreases, the action increases, so that
B(1014 GeV) ∼ 400.

Salvio et al. (2016) obtained fully four-dimensional instanton
solutions numerically, without assuming independence on the
Euclidean time, and found that the three-dimensional sphaleron
solutions have always the lowest action and are therefore the
dominant solutions. They also showed that including the two-
loop corrections to the quadratic term (4.30) or the one-loop
correction to the Higgs kinetic term gives only small correction
to the action.

Taking also the prefactor into account, the vacuum decay rate
at non-zero temperature is (Espinosa et al., 2008; Delle Rose et al.,
2016)

#(T) ≈ T4

(

B(T)

2π

)3/2

e−B(T). (4.35)

4.4. Vacuum Decay in de Sitter Space
In extending from flat space to curved space, the
theorem (Coleman et al., 1978) that guaranteesO(4) symmetry of
the bounce no longer applies. There is some evidence, however,
that in background metrics that do respect this symmetry,
O(4) symmetric solutions should still dominate (Masoumi
and Weinberg, 2012). This would include the special case
of particular interest in this review - an inflationary, or de
Sitter background3. A Wick rotated metric can be placed in a
co-ordinate system that makes the O(4) symmetry of the bounce
immediately manifest,

ds2 = dχ2 + a2(χ)d&2
3, (4.36)

where χ is a radial variable, d&2
3 is the 3-sphere metric, and a2(χ)

is a scale factor that physically describes the radius of curvature
of a surface at constant χ . The bounce equations of motion then
take the form (Coleman and De Luccia, 1980)

ϕ̈ + 3ȧ

a
ϕ̇ − V ′(ϕ) = 0 (4.37)

ȧ2 = 1− a2

3M2
P

(

− ϕ̇
2

2
+ V(ϕ)

)

. (4.38)

3In principle, inflation is not exact de Sitter, and so the background does not respect
exact O(4) symmetry if Euclideanised, but for slow roll inflation models, it is a
reasonable approximation to make.

We will consider the case in which the false vacuum has a positive
energy density, V(ϕfv) > 0, and therefore non-zero Hubble rate

H2 = V(ϕfv)

3M2
P

. (4.39)

The boundary conditions the bounce solution must satisfy
require special attention: a(0) = 0 is required because of the
definition of a(χ) as a radius of curvature of a surface of constant
χ , while we require ϕ̇(0) = ϕ̇(χmax) = 0, where χmax > 0 is
defined by a(χmax) = 0. These boundary conditions avoid the
co-ordinate singularities at χ = 0,χmax giving infinite results,
but allow for the peculiar property that the bounces are compact,
and do not approach the false vacuum anywhere.

One way of understanding this peculiar feature was discussed
by Brown and Weinberg (2007). They considered vacuum decay
in de Sitter space, specifically the static patch co-ordinates where
the metric takes the form

dS2n = −
(

1−H2r2
)

dt2 + (1−H2r2)−1dr2 + r2d&2
n−2, (4.40)

where d&2
n−2 is the n− 2-sphere metric (in this case, n = 4). The

important feature of these co-ordinates is that they are valid only
up to the horizon at r = 1/H. The Euclidean action can then be
re-written as

SE =
∫ π

H

− π
H

dτ

∫

d3x
√
det h

[

1

2
(1−H2r2)−

1
2

(

dϕ

dτ

)2

+1

2
(1−H2r2)

1
2 hij∂iϕ∂jϕ + (1−H2r2)

1
2V(ϕ)

]

, (4.41)

where hij is the remaining spatial metric. Brown and Weinberg
interpreted this to mean that tunneling takes place on a compact
Euclidean space, with a curved three-dimensional geometry. This
compactness condition is reflected in the boundary conditions
ϕ̇(0) = ϕ̇(χmax), which inevitably produce a compact bounce
solution. They observed that the same effect would be seen in
considering a spatially curved universe with this same spatial
geometry, but with a non-zero temperature,

TGH = H

2π
. (4.42)

This corresponds to the Gibbons-Hawking temperature of de
Sitter space (Gibbons and Hawking, 1977), and implies that
bounces in de Sitter space may have a thermal interpretation.

The simplest solution of Equations (4.37) and (4.38) is the
Hawking-Moss solution (Hawking and Moss, 1982). This is a
constant solution, for which ϕ = ϕbar sits at the top of the barrier
for the entire Euclidean period, and the scale factor is given by

a(χ) = 1

HHM
sin(HHMχ), H2

HM = V(ϕbar)

3M2
P

. (4.43)

Hence χmax = π/HHM. The action difference of Equation (4.13)
is then easily computed analytically to be

BHM = 24π2M4
P

(

1

V(ϕfv)
− 1

V(ϕbar)

)

. (4.44)
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Using the approximation of constant negative λ, the action is
Arnold and Vokos (1991)

B(T) =
Esph(T)

T
≈ 18.9

γ

|λ|
. (4.33)

Because γ " 1, this is smaller than the zero-temperature action
(4.19). Therefore the net effect of the non-zero temperature
is to increase the vacuum decay rate compared to the zero-
temperature case.

More accurately, the sphaleron solutions have been calculated
numerically in Delle Rose et al. (2016) and Salvio et al. (2016). At
high temperatures T ! 1016 GeV, the action is roughly

B(T ! 1016 GeV) ∼ 300. (4.34)

When the temperature decreases, the action increases, so that
B(1014 GeV) ∼ 400.

Salvio et al. (2016) obtained fully four-dimensional instanton
solutions numerically, without assuming independence on the
Euclidean time, and found that the three-dimensional sphaleron
solutions have always the lowest action and are therefore the
dominant solutions. They also showed that including the two-
loop corrections to the quadratic term (4.30) or the one-loop
correction to the Higgs kinetic term gives only small correction
to the action.

Taking also the prefactor into account, the vacuum decay rate
at non-zero temperature is (Espinosa et al., 2008; Delle Rose et al.,
2016)

#(T) ≈ T4

(

B(T)

2π

)3/2

e−B(T). (4.35)

4.4. Vacuum Decay in de Sitter Space
In extending from flat space to curved space, the
theorem (Coleman et al., 1978) that guaranteesO(4) symmetry of
the bounce no longer applies. There is some evidence, however,
that in background metrics that do respect this symmetry,
O(4) symmetric solutions should still dominate (Masoumi
and Weinberg, 2012). This would include the special case
of particular interest in this review - an inflationary, or de
Sitter background3. A Wick rotated metric can be placed in a
co-ordinate system that makes the O(4) symmetry of the bounce
immediately manifest,

ds2 = dχ2 + a2(χ)d&2
3, (4.36)

where χ is a radial variable, d&2
3 is the 3-sphere metric, and a2(χ)

is a scale factor that physically describes the radius of curvature
of a surface at constant χ . The bounce equations of motion then
take the form (Coleman and De Luccia, 1980)

ϕ̈ + 3ȧ

a
ϕ̇ − V ′(ϕ) = 0 (4.37)

ȧ2 = 1− a2

3M2
P

(

− ϕ̇
2

2
+ V(ϕ)

)

. (4.38)

3In principle, inflation is not exact de Sitter, and so the background does not respect
exact O(4) symmetry if Euclideanised, but for slow roll inflation models, it is a
reasonable approximation to make.

We will consider the case in which the false vacuum has a positive
energy density, V(ϕfv) > 0, and therefore non-zero Hubble rate

H2 = V(ϕfv)

3M2
P

. (4.39)

The boundary conditions the bounce solution must satisfy
require special attention: a(0) = 0 is required because of the
definition of a(χ) as a radius of curvature of a surface of constant
χ , while we require ϕ̇(0) = ϕ̇(χmax) = 0, where χmax > 0 is
defined by a(χmax) = 0. These boundary conditions avoid the
co-ordinate singularities at χ = 0,χmax giving infinite results,
but allow for the peculiar property that the bounces are compact,
and do not approach the false vacuum anywhere.

One way of understanding this peculiar feature was discussed
by Brown and Weinberg (2007). They considered vacuum decay
in de Sitter space, specifically the static patch co-ordinates where
the metric takes the form

dS2n = −
(

1−H2r2
)

dt2 + (1−H2r2)−1dr2 + r2d&2
n−2, (4.40)

where d&2
n−2 is the n− 2-sphere metric (in this case, n = 4). The

important feature of these co-ordinates is that they are valid only
up to the horizon at r = 1/H. The Euclidean action can then be
re-written as

SE =
∫ π

H

− π
H

dτ

∫

d3x
√
det h

[

1

2
(1−H2r2)−

1
2

(

dϕ

dτ

)2

+1

2
(1−H2r2)

1
2 hij∂iϕ∂jϕ + (1−H2r2)

1
2V(ϕ)

]

, (4.41)

where hij is the remaining spatial metric. Brown and Weinberg
interpreted this to mean that tunneling takes place on a compact
Euclidean space, with a curved three-dimensional geometry. This
compactness condition is reflected in the boundary conditions
ϕ̇(0) = ϕ̇(χmax), which inevitably produce a compact bounce
solution. They observed that the same effect would be seen in
considering a spatially curved universe with this same spatial
geometry, but with a non-zero temperature,

TGH = H

2π
. (4.42)

This corresponds to the Gibbons-Hawking temperature of de
Sitter space (Gibbons and Hawking, 1977), and implies that
bounces in de Sitter space may have a thermal interpretation.

The simplest solution of Equations (4.37) and (4.38) is the
Hawking-Moss solution (Hawking and Moss, 1982). This is a
constant solution, for which ϕ = ϕbar sits at the top of the barrier
for the entire Euclidean period, and the scale factor is given by

a(χ) = 1

HHM
sin(HHMχ), H2

HM = V(ϕbar)

3M2
P

. (4.43)

Hence χmax = π/HHM. The action difference of Equation (4.13)
is then easily computed analytically to be

BHM = 24π2M4
P

(

1

V(ϕfv)
− 1

V(ϕbar)

)

. (4.44)
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solution, sitting in the false vacuum with energy E. The “bounce”
solution is so named because we see, by energy conservation, that
it starts at x1, rolls down the inverted potential before “bouncing”
off x2 and rolling back. By finding this solution and evaluating its
action, we can compute the rate for tunneling through a barrier.

This argument generalized straightforwardly to many-body
quantum systems, where we use the action

SE[qi(τ )] =
∫

dτ

[

∑

i

1

2

(

dqi
dτ

)2

+W(qi)

]

. (4.6)

With more than one degree of freedom, however, there are
actually an infinite number of paths that qi(τ ) could take when
passing through the barrier, corresponding to an infinite number
of solutions. However, since the decay rate is exponentially
dependent on the action, " ∝ e−SE[qi], it is clear that only
the solution with smallest Euclidean action will contribute
significantly, as this will dominate the decay rate (in other words,
the tunneling takes the “path of least resistance”).

The generalization from amany body system, qi, to a quantum
field theory with scalar field ϕ(x) is then straightforward,

SE[ϕ(x)] =
∫

d4x

[

1

2
∂µϕ∂

µϕ + V(ϕ)

]

. (4.7)

The integral here is over flat four-dimensional Euclidean space,
and note that the opposite sign of the potential leads to an
opposing sign in the equations of motion,

− ∇µ∇µϕ + V ′(ϕ) = 0. (4.8)

Although it is tempting to interpret V(φ) as the potential to
be tunneled through, this is only somewhat true. The analog of
W(qi) in Equation (4.6) is a functional of the field configuration
ϕ(x), given by an integral over three-dimensional space,

U[ϕ(x)] =
∫

d3x

[

1

2
(∇ϕ)2 + V(ϕ)

]

, (4.9)

where ∇ϕ represents the spatial derivative of the field. In
the analogy with quantum mechanics, this term should be
considered part of the potential, as its many body equivalent
is a nearest-neighbor interaction between adjacent degrees of
freedom, qi, qi±1. This means, in particular, while in quantum
mechanics, the particle emerges after tunneling at a point x2 that
has the same potential energy,W(x1) = W(x2), in quantum field
theory, the field emerges lower down the potential V .

In a field theory, the analog of x2 is a field configuration,
ϕ(x), given by slicing the bounce solution at its mid-way point.
This is a nucleated “true-vacuum” bubble, whose decay rate is
determined by the Euclidean action of the bounce solution, ϕB.
As we will see in section 4.7, the dominant Euclidean solutions
haveO(4) symmetry, which means that the bubble nucleates with
O(3, 1) symmetry. This causes it to expand at near the speed
of light, resulting in the space around a nucleation point being
converted to the true vacuum, releasing energy into the bubble
wall. Apart from the destruction that this would unleash, and the

different masses of fundamental particles in the bubble interior,
the result is also gravitational collapse of the bubble (Coleman
and De Luccia, 1980), making its nucleation in our past light-
cone completely incompatible with the trivial observation that
the vacuum has not decayed (yet).

In cosmological applications, but also other areas, it is also
important to consider the effect of thermally induced fluctuations
over the barrier. Brown and Weinberg (2007) describe how
thermal effects can be included in the above argument. At non-
zero temperature, we must integrate over the possible excited
states, and the decay exponent which depends on energy,

T ∝
∫

dEe−βEe−B(E), (4.10)

where B(E) is the (energy dependent) difference in Euclidean
action between the bounce solution and the excited state of
energy E. This integral is dominated by the energy that minimizes
the exponent βE+ B(E), which is easily shown to satisfy

β = 2(τ2(E)− τ1(E)), (4.11)

where τ1, τ2 are the initial and final values in imaginary time
of the (energy dependent) bounce solution. In other words,
the bounce solution is periodic in imaginary time, with period
controlled by the temperature.

In quantum field theory, the decay rate per unit volume
and time of a metastable vacuum decays was first discussed by
Coleman (Coleman, 1977; Callan and Coleman, 1977), and is
given by

" = A exp (−B) , A =
(

B

2π

)2 ∣
∣

∣

∣

det′(S′′[ϕB])

det(S′′[ϕfv])

∣

∣

∣

∣

− 1
2

, (4.12)

where

B = S[ϕB]− S[ϕfv] (4.13)

is the difference between the Euclidean action of a so called
bounce solution ϕB of the Euclidean (Wick rotated) equations
of motion, and the action of the constant solution ϕfv which sits
in the false vacuum. S′′ denotes the second functional derivative
of the Euclidean action of a given solution, and det′ denotes
the functional determinant after extracting the four zero-mode
fluctuations which correspond to translations of the bounce
(these are responsible for the formula giving a decay rate per unit
volume). Precise calculations of the pre-factor A in the Standard
Model were performed in Isidori et al. (2001), and involve
computing the fluctuations around the bounce solution of all
fields that couple to the Higgs. This requires renormalizing the
loop corrections, and also to avoid double-counting, expanding
around the tree-level bounce, rather than the bounce in the loop
corrected potential.

In the gravitational case, the prefactor A is harder to compute.
The main issue is that it includes both Higgs and gravitational
fluctuations, and without a way of renormalizing the resulting
graviton loops, the calculation becomes much harder. Various
attempts have been made to do this using the fluctuations
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FIGURE 7 | Stability diagram of the Standard Model vacuum state in the pole

masses Mt, Mh of the top quark and Higgs boson, respectively. Ellipses show

the 1σ , 2σ , 3σ confidence intervals for Mt and Mh around their central values

from Tanabashi et al. (2018). In the green region, the current vacuum is

absolutely stable, in the yellow region it satisfies the bound (5.9), and in the red

region it is so unstable that it would not have survived until the present day.

The instability boundary includes gravitational backreaction (Rajantie and

Stopyra, 2017) and is shown for ξ = 0 and ξ = ±1000 of the non-minimal

curvature coupling. The blue dashed line shows the instability bound (5.62)

obtained by taking the thermal history of the Universe into account (Delle Rose

et al., 2016) and assuming a high reheat temperature TRH = 1016 GeV. For

lower reheat temperatures, the instability bound becomes weaker, and

approaches the red dotted line as TRH → 0.

what we observe, no matter how low the probability is a priori.
One can therefore argue that observations do not require 〈N 〉 !
1. However, the anthropic argument does not rule out bubbles
hitting us in the future, and therefore, if the Universe survives for
a further period of time, that imposes a bound that is not subject
to the anthropic principle. For this, the quantity that matters is
the time derivative of the expected number of bubbles,

d〈N 〉
dt

= 4π

a0
$0

∫ η0

ηini

dη a(η)4(η0 − η)2. (5.11)

This imposes constraints that are numerically weaker but cannot
be avoided by anthropic reasoning. To be concrete, one can
carry out an experiment by waiting for a period of time texp, for
example 1 year. If, at the end of the time period, the experimenter
has not been hit by a bubble wall, this gives a constraint

texp
d〈N 〉
dt

! 1. (5.12)

For the post-inflationary Universe this is

texp
d〈N 〉
dt

= (texpH0)× 4.91$0H
−4
0 , (5.13)

and for texp = 1yr, one obtains the bound

$0 ! 2.9× 1010H4
0 , or B " 520. (5.14)

This is weaker than Equation (5.9), but because of the very strong
dependence of$0 on the top andHiggsmasses, it does not change
the stability constraints on them significantly.

5.3. Inflation
Although most of the spacetime volume of our past lightcone
comes from the late times, the vacuum decay rate $(a) was much
higher in the very early Universe. Depending on the cosmological
scenario, it can be high enough to violate the bound (5.7), and this
can be used to constrain theories.

The earliest stage in the evolution of the Universe that
we have evidence for is inflation, a period of accelerating
expansion, which made the Universe spatially flat, homogeneous
and isotropic and also generated the initial seeds for structure
formation. In simplest models of inflation, the energy density
driving it is in the form of the potential energy V(φ) of a
scalar field φ known as the inflaton. The inflaton field is nearly
homogeneous, and satisfies the equation of motion

φ̈ + 3Hφ̇ + V ′(φ) = 0. (5.15)

During inflation the potential satisfies the slow-roll conditions,

ε ≡
M2

P

2

(

V ′

V

)2

(1, and −1(η ≡ M2
P

(

V ′′

V

)

(1. (5.16)

These conditions guarantee the existence of a solution in which
the first term in Equation (5.15) is subdominant, and the inflaton
field rolls slowly down the potential V(φ). As a consequence, the
energy density ρ ≈ V(φ) and the Hubble rate are approximately
constant.

The Hubble rate during inflation, Hinf, is largely unknown.
Observationally it is constrained from above by the limits
on primordial B-mode polarization in the cosmic microwave
background radiation. This gives an upper bound r < 0.09
on the tensor-to-scalar ratio (Ade et al., 2016), which implies
Hinf ! 3.3 × 10−5MP ≈ 8.0 × 1013 GeV at the time when
the observable scales left the horizon. In a realistic inflationary
model, the Hubble rate decreases with time, and would therefore
be lower at the end of inflation. Although there are models in
which the Hubble rate is well below the tensor bound, it is
generally expected to be close to it, and in the simplest single-
field inflation models it even exceeds it. It is therefore considered
to be likely that the Hubble rate was significantly higher than the
Higgs massmH ≈ 125 GeV.

The minimal inflationary model is Higgs inflation (Bezrukov
et al., 2008), in which the non-minimal curvature coupling of the
Higgs field is large, ξ ∼ −49000

√
λ. This allows it to play the

role of the inflaton, without the need for a separate inflaton field.
During inflation, the Higgs field has a large value ϕ ∼ MP/|ξ |,
which means that the existence of a negative-energy minimum
would appear to pose a problem for the scenario, because if the
Higgs field gets trapped there, it would lead to a rapid collapse of
the Universe instead of inflation. However, inclusion of higher-
dimensional operators and finite temperature effects can avoid
this problem (Bezrukov et al., 2015). Of course, if the actual
top and Higgs masses lie in the stable region (see Figure 7), no
problem arises. Furthermore, if they are just below the stability
boundary, the effective Higgs potential would have an inflection
point which would allow the scenario known as critical Higgs
inflation (Bezrukov and Shaposhnikov, 2014; Hamada et al.,
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FIGURE 8 | Stability bounds on the non-minimal coupling ξ (renormalized at the electroweak scale) and the Hubble rate during inflation Hinf . The colored area shows

the unstable region based on the numerical results from Markkanen et al. (2018), the cross corresponds to Equation (5.32), the dashed line to Equation (5.41) and the

dash-dotted line to Equation (5.42). The bottom axis refers to units calculated using the barrier position from Equation (2.32).

Vaskonen (2016), Dimopoulos and Markkanen (2018), and Haro
(2018).

An inflaton field coherently oscillating around the minimum
of its potential may source a very potent non-perturbative
amplification of quantum modes, which takes place during
the early stages of reheating and is hence often referred to
as preheating (Kofman et al., 1994, 1997). If a phase of
preheating occurs, it does not lead to the completion of
reheating as the created particles tend to shut off any non-
perturbative behavior through backreaction and a perturbative
decay channel is often required to ensure the complete decay of
the inflaton.

From the point of view of a possible vacuum destabilization,
preheating is a crucial epoch because vacuum decay is potentially
induced by a large amplification of the Higgs field (Herranen
et al., 2015). It is important to note that at the time of preheating,
the Universe has not yet reheated to a high temperature, and
therefore the thermal effects discussed in section 4.3 cannot
stabilize the vacuum state.

Let us proceed to consider the familiar Lagrangian appropriate
for the Higgs doublet in curved space (3.30).We consider Hubble
rates well above the electroweak scale,H!Mh, and therefore we
can neglect the tree-level mass parameter, and use the action

S =
∫

d4x
√

|g|
[

1

2
∇µϕ∇µϕ − ξ

2
Rϕ2 − λ

4
ϕ4
]

. (5.46)

We also assume a single-field model of inflation with a canonical
kinetic term and the potential U(φ). The inflaton φ is taken
to dominate the energy density of the Universe completely
and because of this the Higgs field may be considered as a

subdominant spectator that can be neglected in the Einstein
equation. Using then

ρ = 1

2
φ̇2 + U(φ) ; p = 1

2
φ̇2 − U(φ) , (5.47)

in the Friedmann equations (3.5), we can solve for the Ricci scalar
R

R = 6

[(

ȧ

a

)2

+ ä

a

]

= 1

M2
P

[

4U(φ)− φ̇2
]

. (5.48)

After inflation ends, the inflaton field φ rolls down its potential,
and initially oscillates coherently about its minimum φmin, until it
eventually decays. We assume that the inflaton potential vanishes
at the minimum, U(φmin), as is usually the case. We can see from
Equation (5.48) that during every oscillation, when φ ≈ φmin,
the Ricci scalar becomes negative, R < 0. This, in turn, means
that the non-minimal term ∼ ξRϕ2 gives rise to a tachyonic
mass term (3.12) for the Higgs field. As already discussed in
section 3.3, this gives rise to significant excitation of the field. The
fact that the non-minimal term can lead to extremely efficient
particle creation during preheating was first discussed in Bassett
and Liberati (1998) and Tsujikawa et al. (1999).

Particle creation from a periodically tachyonic effective mass
was analyzed in detail in Dufaux et al. (2006) where it was named
tachyonic resonance. It is much more extreme than the resonant
effects usually taking place during preheating. Hence a dangerous
fluctuation of the Higgs field can be generated during a single
oscillation of the inflaton.
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Interesting formally, but also to understand the vacuum dynamics of the SM (and BSM) in the early universe.
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THE PROOF IN ONE MINUTE 
Turns out mathematicians have been thinking about 
those solutions too (in the context of minimal surfaces):  

Their ideas live in the classical part of the physics calc.

Markkanen et al. Cosmological Aspects of Higgs Vacuum Metastability

solution, sitting in the false vacuum with energy E. The “bounce”
solution is so named because we see, by energy conservation, that
it starts at x1, rolls down the inverted potential before “bouncing”
off x2 and rolling back. By finding this solution and evaluating its
action, we can compute the rate for tunneling through a barrier.

This argument generalized straightforwardly to many-body
quantum systems, where we use the action

SE[qi(τ )] =
∫

dτ

[

∑

i

1

2

(

dqi
dτ

)2

+W(qi)

]

. (4.6)

With more than one degree of freedom, however, there are
actually an infinite number of paths that qi(τ ) could take when
passing through the barrier, corresponding to an infinite number
of solutions. However, since the decay rate is exponentially
dependent on the action, " ∝ e−SE[qi], it is clear that only
the solution with smallest Euclidean action will contribute
significantly, as this will dominate the decay rate (in other words,
the tunneling takes the “path of least resistance”).

The generalization from amany body system, qi, to a quantum
field theory with scalar field ϕ(x) is then straightforward,

SE[ϕ(x)] =
∫

d4x

[

1

2
∂µϕ∂

µϕ + V(ϕ)

]

. (4.7)

The integral here is over flat four-dimensional Euclidean space,
and note that the opposite sign of the potential leads to an
opposing sign in the equations of motion,

− ∇µ∇µϕ + V ′(ϕ) = 0. (4.8)

Although it is tempting to interpret V(φ) as the potential to
be tunneled through, this is only somewhat true. The analog of
W(qi) in Equation (4.6) is a functional of the field configuration
ϕ(x), given by an integral over three-dimensional space,

U[ϕ(x)] =
∫

d3x

[

1

2
(∇ϕ)2 + V(ϕ)

]

, (4.9)

where ∇ϕ represents the spatial derivative of the field. In
the analogy with quantum mechanics, this term should be
considered part of the potential, as its many body equivalent
is a nearest-neighbor interaction between adjacent degrees of
freedom, qi, qi±1. This means, in particular, while in quantum
mechanics, the particle emerges after tunneling at a point x2 that
has the same potential energy,W(x1) = W(x2), in quantum field
theory, the field emerges lower down the potential V .

In a field theory, the analog of x2 is a field configuration,
ϕ(x), given by slicing the bounce solution at its mid-way point.
This is a nucleated “true-vacuum” bubble, whose decay rate is
determined by the Euclidean action of the bounce solution, ϕB.
As we will see in section 4.7, the dominant Euclidean solutions
haveO(4) symmetry, which means that the bubble nucleates with
O(3, 1) symmetry. This causes it to expand at near the speed
of light, resulting in the space around a nucleation point being
converted to the true vacuum, releasing energy into the bubble
wall. Apart from the destruction that this would unleash, and the

different masses of fundamental particles in the bubble interior,
the result is also gravitational collapse of the bubble (Coleman
and De Luccia, 1980), making its nucleation in our past light-
cone completely incompatible with the trivial observation that
the vacuum has not decayed (yet).

In cosmological applications, but also other areas, it is also
important to consider the effect of thermally induced fluctuations
over the barrier. Brown and Weinberg (2007) describe how
thermal effects can be included in the above argument. At non-
zero temperature, we must integrate over the possible excited
states, and the decay exponent which depends on energy,

T ∝
∫

dEe−βEe−B(E), (4.10)

where B(E) is the (energy dependent) difference in Euclidean
action between the bounce solution and the excited state of
energy E. This integral is dominated by the energy that minimizes
the exponent βE+ B(E), which is easily shown to satisfy

β = 2(τ2(E)− τ1(E)), (4.11)

where τ1, τ2 are the initial and final values in imaginary time
of the (energy dependent) bounce solution. In other words,
the bounce solution is periodic in imaginary time, with period
controlled by the temperature.

In quantum field theory, the decay rate per unit volume
and time of a metastable vacuum decays was first discussed by
Coleman (Coleman, 1977; Callan and Coleman, 1977), and is
given by

" = A exp (−B) , A =
(

B

2π

)2 ∣
∣

∣

∣

det′(S′′[ϕB])

det(S′′[ϕfv])

∣

∣

∣

∣

− 1
2

, (4.12)

where

B = S[ϕB]− S[ϕfv] (4.13)

is the difference between the Euclidean action of a so called
bounce solution ϕB of the Euclidean (Wick rotated) equations
of motion, and the action of the constant solution ϕfv which sits
in the false vacuum. S′′ denotes the second functional derivative
of the Euclidean action of a given solution, and det′ denotes
the functional determinant after extracting the four zero-mode
fluctuations which correspond to translations of the bounce
(these are responsible for the formula giving a decay rate per unit
volume). Precise calculations of the pre-factor A in the Standard
Model were performed in Isidori et al. (2001), and involve
computing the fluctuations around the bounce solution of all
fields that couple to the Higgs. This requires renormalizing the
loop corrections, and also to avoid double-counting, expanding
around the tree-level bounce, rather than the bounce in the loop
corrected potential.

In the gravitational case, the prefactor A is harder to compute.
The main issue is that it includes both Higgs and gravitational
fluctuations, and without a way of renormalizing the resulting
graviton loops, the calculation becomes much harder. Various
attempts have been made to do this using the fluctuations
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Using techniques from the theory of minimal surfaces (and some old theorems), one can show that: 

A) Non-constant extremal configs of lowest action are saddle points of the action (not the 
potential) with one negative eigenvalue. 

B) If a saddle point is not O(4) symmetric then it is possible to construct a saddle point with strictly 
lower action which is O(4) symmetric.



Collaboration with pure math is not just useful in mathematical 
physics 

Also useful to tackle phenomenology problems 

The translation is not trivial, but it is also a lot of fun and you’ll end up 
understanding the underlying physics under a different light

Thinking about this raised a lot of interesting questions about the quantum side 
of things.  

Wick rotation? Euclidean path integral? WKB?  

A lot to think about.  

It looks like we’ll end up proving that physical intuition was right. But 
it needs to be done, new insights might be hiding within! 


