

Partikeldagarna 2020 November 23, 2020

Collaborators Riccardo Catena Nicola A. Spaldin Walter Tarantino

Based on [arXiv:1912.08204]

How atoms respond to general dark matter-electron interactions

Timon Emken Chalmers University of Technology

CHALMERS

How atoms respond to general dark matterelectron interactions

I. Direct Searches for sub-GeV DM via electron scatterings

II. General DM-electron interactions and atomic responses

Direct Searches for sub-GeV DM via electron scatterings

Direct Detection of Dark Matter via electron recoils

Instead of nuclear recoils, search for DM-electron interactions.

-a='a

J. Kopp et al., PRD, [arXiv:0907.3159] R. Essig et al., PRD [arXiv:1108.5383]

p'=p-

 $E_{2}>0$

$$E_e^{\max} = \frac{1}{2} \mu_{\chi N} v^2 \lesssim E_{\chi} \sim 3 \,\mathrm{eV} \left(\frac{m_{\chi}}{\mathrm{MeV}}\right)$$

Nuclear recoils:

$$E_{\rm NR}^{\rm max} = \gamma E_{\chi}$$

$$\gamma \approx 4 \frac{m_{\chi}}{m_N} \ll 1 \quad \text{for } m_{\chi} \ll m_N$$

• Lowest DM mass to excite/ionize an electron in...

• ...an isolated atom:

 $E_B \approx 10 \,\mathrm{eV} \implies m_{\chi}^{\min} \approx 3 \,\mathrm{MeV}$

• ...a semiconductor: $E_{gap} \approx 1 \text{ eV} \implies m_{\chi}^{\min} \approx 300 \text{ keV}$ Lee et al., PRD, [arXiv:1508.07361] Essig et al., JHEP, [arXiv:1509.01598]

23.11.2020

Partikeldagarna 2020

Timon Emken, Chalmers University of Technology

4

DM induced electron ionizations

Complication: Target electrons are bound states.
Electrons are not in a momentum eigenstate.
Example: Ionization spectrum for isolated atoms:

$$\frac{\mathrm{d}R_{\mathrm{ion}}}{\mathrm{d}E_{e}} = \frac{1}{m_{N}} \frac{\rho_{\chi}}{m_{\chi}} \sum_{nl} \frac{\langle \mathrm{d}\sigma_{\mathrm{ion}}^{nl} v \rangle}{\mathrm{d}E_{e}}$$

$$\frac{\mathrm{d}\langle\sigma_{\mathrm{ion}}^{nl} v \rangle}{\mathrm{d}E_{e}} = \frac{\sigma_{e}}{8\mu_{\chi e}^{2} E_{e}} \int \mathrm{d}q \, q \, \left|F_{\mathrm{DM}}(q)\right|^{2} \left|f_{\mathrm{ion}}^{nl}(k',q)\right|^{2} \eta \left(v_{\mathrm{min}}(\Delta E_{e},q)\right)$$

• Predictions require the evaluation of an ionization form factor.

- There is still theoretical uncertainty in the evaluation of the ionization form factors.
 See e.g. Roberts & Flambaum, [arXiv:1904.07127], and Pandey et al., [arXiv:1812.11759]
- For crystals, this requires methods from condensed matter physics.

Essig et al., JHEP, [arXiv:1509.01598]

23.11.2020

Atomic ionization form factors

- Complication: Target electrons are bound states.
- The electron transition is described by a "ionization form factor":

• Examples:

General DM-electron interactions and atomic responses

The "Standard Model" of direct searches for sub-GeV DM

Extend the SM by a DM particle and a U(1) gauge group with kinetic mixing.

 $\equiv f_{1 \to 2}(q)$

$$\mathscr{L}_{D} = \bar{\chi}(i\gamma^{\mu}D_{\mu} - m_{\chi})\chi + \frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} + m_{A'}^{2}A'_{\mu}A'^{\mu} + \varepsilon F_{\mu\nu}F'^{\mu\nu}$$

Holdom, Phys. Lett. 166B (1986) 196

Scattering amplitudes only depend on the momentum transfer.

• Transition rate between two electronic states $1 \rightarrow 2$:.

$$R_{1\to 2} \propto \left| \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \psi_2^*(\mathbf{k} + \mathbf{q}) \,\mathcal{M}_{\text{free}}(q) \,\psi_1(\mathbf{k}) \right|$$

• The DM and atomic physics "factorize" conveniently.

$$R_{1\to 2} \propto \left| \mathcal{M}_{\text{free}}(q) \right|^2 \times \left| \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \psi_2^*(\mathbf{k} + \mathbf{q}) \psi_1(\mathbf{k}) \right|^2$$

Initial bound state wave function. Free scattering amplitude. Final state wave function.

DM physics atomic form factor

23.11.2020

Partikeldagarna 2020

Effective description of DM-electron scatterings

• General non-relativistic amplitude:

$$\mathcal{M}(\mathbf{q}, \mathbf{v}_{\mathrm{el}}^{\perp}) = \sum_{i} \left(c_{i}^{s} + c_{i}^{\ell} \frac{q_{\mathrm{ref}}^{2}}{|\mathbf{q}|^{2}} \right) \langle \mathcal{O} \rangle$$

Contact interactions Long-range interactions

• Effective operators

$$\begin{array}{ll} \mathcal{O}_{1} = \mathbbm{1}_{X}\mathbbm{1}_{e} & \mathcal{O}_{11} = i\vec{S}_{X}\cdot\frac{\vec{q}}{m_{e}}\mathbbm{1}_{e} \\ \mathcal{O}_{3} = i\vec{S}_{e}\cdot\left(\frac{\vec{q}}{m_{e}}\times\vec{v}^{\perp}\right)\mathbbm{1}_{X} & \mathcal{O}_{12} = \vec{S}_{X}\cdot\left(\vec{S}_{e}\times\vec{v}^{\perp}\right) \\ \mathcal{O}_{4} = \vec{S}_{X}\cdot\vec{S}_{e} & \mathcal{O}_{13} = i\left(\vec{S}_{X}\cdot\vec{v}^{\perp}\right)\left(\vec{S}_{e}\cdot\frac{\vec{q}}{m_{e}}\right) \\ \mathcal{O}_{5} = i\vec{S}_{X}\cdot\left(\frac{\vec{q}}{m_{e}}\times\vec{v}^{\perp}\right)\mathbbm{1}_{e} & \mathcal{O}_{14} = i\left(\vec{S}_{X}\cdot\frac{\vec{q}}{m_{e}}\right)\left(\vec{S}_{e}\cdot\vec{v}^{\perp}\right) \\ \mathcal{O}_{6} = \left(\vec{S}_{X}\cdot\frac{\vec{q}}{m_{e}}\right)\left(\vec{S}_{e}\cdot\frac{\vec{q}}{m_{e}}\right) & \mathcal{O}_{15} = i\mathcal{O}_{11}\left[\left(\vec{S}_{e}\times\vec{v}^{\perp}\right)\cdot\frac{\vec{q}}{m_{e}}\right) \\ \mathcal{O}_{7} = \vec{S}_{e}\cdot\vec{v}^{\perp}\mathbbm{1}_{X} & \mathcal{O}_{15} = i\mathcal{O}_{11}\left[\left(\vec{S}_{e}\times\vec{v}^{\perp}\right)\cdot\frac{\vec{q}}{m_{e}}\right) \\ \mathcal{O}_{8} = \vec{S}_{X}\cdot\vec{v}^{\perp}\mathbbm{1}_{e} & \mathcal{O}_{18} = i\frac{\vec{q}}{m_{e}}\cdot\vec{S}\cdot\vec{S}_{e} \\ \mathcal{O}_{9} = i\vec{S}_{X}\cdot\left(\vec{S}_{e}\times\frac{\vec{q}}{m_{e}}\right) & \mathcal{O}_{19} = \frac{\vec{q}}{m_{e}}\cdot\vec{S}\cdot\frac{\vec{q}}{m_{e}} \\ \mathcal{O}_{10} = i\vec{S}_{e}\cdot\frac{\vec{q}}{m_{e}}\mathbbm{1}_{X} & \mathcal{O}_{20} = \left(\vec{S}_{e}\times\frac{\vec{q}}{m_{e}}\right)\cdot\vec{S}\cdot\frac{\vec{q}}{m_{e}} \end{array}$$

23.11.2020

Timon Emken, Chalmers University of Technology

A general expression for the event spectrum

• The general scattering amplitude $\mathcal{M}_{\rm free}(q,v_{\rm el}^{\perp})$ depends on the initial electron's momentum ${\bf k}$ via

$$\boldsymbol{v}_{\text{el}}^{\perp} = \frac{(\mathbf{p} + \mathbf{p}')}{2m_{\chi}} - \frac{(\mathbf{k} + \mathbf{k}')}{2m_{e}}$$

The amplitude can no longer be taken out of the integral.

$$R_{1\to 2} \propto \left| \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \psi_2^*(\mathbf{k} + \mathbf{q}) \,\mathcal{M}_{\text{free}}(q, v_{\text{el}}^{\perp}) \,\psi_1(\mathbf{k}) \right|$$

• The energy spectrum can be written as

$$\frac{\mathrm{d}R_{\mathrm{ion}}^{n\ell}}{\mathrm{d}\ln E_e} = \frac{n_{\chi}}{128\pi m_{\chi}^2 m_e^2} \int \mathrm{d}q \ q \int \frac{\mathrm{d}^3 v}{v} f_{\chi}(\mathbf{v})\Theta(v - v_{\mathrm{min}}) \overline{\left|\mathcal{M}_{\mathrm{ion}}^{n\ell}\right|^2}$$

• Using the general effective amplitude, the "ionization amplitude" can be written as

$$\overline{|\mathcal{M}_{\text{ion}}^{n\ell}|^2} = \sum_{i=1}^{4} R_i^{n\ell} \left(\mathbf{v}_{\text{el}}^{\perp}, \frac{\mathbf{q}}{m_e} \right) \times W_i^{n\ell}(k', \mathbf{q}).$$
 DM response function
Atomic response function

23.11.2020

Partikeldagarna 2020

Timon Emken, Chalmers University of Technology

The four atomic response functions of Xenon 5p

11

Exclusion limits on individual operators or BSM models

Summary

- DM-electron scatterings allow direct searches for sub-GeV DM masses.
- So far, only one class of DM-electron interactions has been studied.
- General interactions give rise to new atomic response functions.
- We studied the example of isolated xenon and argon atoms and derived first constraints based on DarkSide-50, XENON10, and XENON1T.

Outlook

- DM-electron interactions could probe completely new, so far hidden properties of materials.
- Apply the idea to more complex targets: semiconductors, Dirac materials, liquid nobles,...
- see Einar's talk on Wednesday. Study of atoms as a starting point of an interdisciplinary program with many interesting directions to go.

Thank you!

CHA UNIVERSITY OF TECHNOLOGY

The four atomic response functions

• The general interactions give rise to four atomic response functions:

$$W_{1}^{n\ell}(k',\mathbf{q}) \equiv \frac{4k^{3}}{(2\pi)^{3}} \sum_{m=-\ell}^{\ell} \sum_{\ell'=0}^{\infty} \sum_{m'=-\ell'}^{\ell'} \left| f_{1\rightarrow2}(q) \right|^{2}, \text{ The standard ionization form factor}$$

$$W_{2}^{n\ell}(k',\mathbf{q}) \equiv \frac{4k^{3}}{(2\pi)^{3}} \sum_{m=-\ell}^{\ell} \sum_{\ell'=0}^{\infty} \sum_{m'=-\ell'}^{\ell'} \frac{\mathbf{q}}{m_{e}} \cdot \left(f_{1\rightarrow2}(\mathbf{q}) \mathbf{f}_{1\rightarrow2}^{*}(\mathbf{q}) \right), \text{ New atomic}$$

$$W_{3}^{n\ell}(k',\mathbf{q}) \equiv \frac{4k^{3}}{(2\pi)^{3}} \sum_{m=-\ell}^{\ell} \sum_{\ell'=0}^{\infty} \sum_{m'=-\ell'}^{\ell'} \left| \mathbf{f}_{1\rightarrow2}(\mathbf{q}) \right|^{2}, \text{ New atomic}$$

$$W_{4}^{n\ell}(k',\mathbf{q}) \equiv \frac{4k^{3}}{(2\pi)^{3}} \sum_{m=-\ell}^{\ell} \sum_{\ell'=0}^{\infty} \sum_{m'=-\ell'}^{\ell'} \left| \frac{\mathbf{q}}{m_{e}} \cdot \mathbf{f}_{1\rightarrow2}(\mathbf{q}) \right|^{2}$$

Constructed from the scalar and vectorial atomic form factor:

$$f_{1\to 2}(\mathbf{q}) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \psi_{k'\ell'm'}^*(\mathbf{k} + \mathbf{q})\psi_{nlm}(\mathbf{k}) \qquad \mathbf{f}_{1\to 2}(\mathbf{q}) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \psi_{k'\ell'm'}^*(\mathbf{k} + \mathbf{q}) \frac{\mathbf{k}}{m_e} \psi_{nlm}(\mathbf{k})$$

23.11.2020 Partikeldagarna 2020