Neutron-Antineutron Annihilation Detector for the nnbar Experiment

K. Dunne for the <u>nnbar/HIBEAM Collaboration</u> Swedish Particle Physics Meeting November 23–25, 2020

Baryon Number Violation - motivation for nnbar searches

- BNV appears necessary to understand matter-antimatter asymmetry
 - Last unobserved <u>Sakharov condition</u>
- BNV is a hallmark of many BSM theories
- $\Delta B = 2$ (e.g. neutron-antineutron oscillation) probes complementary yet unique physics compared to proton decay and 0v2 β (Super-K, DUNE, etc.)
- ESS is new opportunity to use high luminosity beam of thermal neutrons

Magnetic Shielding and Vacuum Tube

- Free neutron search for neutron-antineutron oscillations at the ESS (>2030)
- 2-stage experiment beginning with HIBEAM (mid 2020s)
 - HIBEAM: neutron-sterile neutron search, detector validation for nnbar
- Search for annihilation event between antineutron and neutron in Carbon foil target
- Expect ≥10³ increase in sensitivity over previous experiment at ILL
 - Rare opportunity for discovery of testable mechanisms of baryogenesis
- Close collaboration with ESS through HighNESS project (see V. Santoro's talk)
 - Substantial investment by ESS in beamline infrastructure with nnbar in mind

- Annihilation event in C foil target
- Avg of ~4 pions, including π⁰ which decays immediately to 2 gammas
- Ultimate Aim
 - Claim discovery with one event
 - Statistical corrections not possible
 - PID, Momentum and Energy of all annihilation and nuclear products

Single Event Confirmation

Topology

- Common vertex + two charged pions
 - No vertex in 2nd foil
- 3D tracking with TPC
- 2D track inside vacuum

Particle Identification

- Identify charged particles as π or p
- Identify pairs of gammas as π^0
- TPC for dE/dx combined with E or range from calorimeter

Energy and Momentum

- Needs PID
- Large energy fraction carried by nuclear fragments
- Energy by neutrons lost

Direction

- All particles must move outwards
- Veto charged Cosmics

Schematic of Full Detector

- Silicon strips for vertex reconstruction
- TPC for tracking
- Hadronic range + full absorption

TPC

Trigger and Data Acquisition in Calorimeter/TPC

Triggering

- Timing very useful
 - Coincidence windows for multi-pion events (ns resolution)
- Energy not as useful
 - Large uncertainties for low-energy particles

Background Rejection

- Timing distinguish fake coincidences by cosmic hits
- Threshold to remove low energy photons, nuclear products

'Triggerless' DAQ

- Neutron beam essentially continuous
 - Event times unknown
- Calorimeter hit timing->TPC track data
- Self-triggered readout of calorimeter & veto channels

Calorimeter

Universitv

- Poor energy resolution for low energy π's
- Use binary readout (hit/no hit) of scintillators
- Direction of flight
 - Exploit fact that Cerenkov cone is directional

K. Dunne | Neutron-Antineutron Annihilation Detector for nnbar@ESS | Partikeldagarna

Calorimeter Prototype

- Work ongoing at SU to build Calorimeter prototype
- Will validate at various test facilities
 - Energy reconstruction
 - Direction of flight with absorbing lead-glass inner face
 - Cosmic ray response (see talk from S.C. Yiu)
 - Comparison of ABALONE sensors to PMTs
 - Trigger and DAQ integration
- Ultimately deployed ~2023 at ESS test beam to validate background response
 Particle

Beam

Detector Simulations

- Calorimeter prototype simulations ~
 - Energy reconstruction
 - Validate binary readout of scintillators
 - \circ Lead-glass granularity for separation of gammas from π^0 decay
- Full detector simulations
 - Detector response to cosmic rays
 - Detector acceptance with various geometries

K. Dunne | Neutron-Antineutron Annihilation Detector for nnbar@ESS | Partikeldagarna

The nnbar collaboration

New high-sensitivity searches for neutrons converting into antineutrons and/or sterile neutrons at the European Spallation Source

A. Addazih, K. Andersonaq, S. Ansell^{bm}, K. S. Babuaz, J. Barrow^w, D. V. Baxter^{d,e,f}, P. M. Bentley^{ac}, Z. Berezhiani^{b,l}, R. Bevilacqua^{ac}, R. Biondi^b, C. Bohm^{ba}, G. Brooijmans^{an}, L. J. Broussard^{aq}, B. Dev^{ay}, C. Crawford^z, A. D. Dolgov^{ai,ao}, K. Dunne^{ba}, P Fierlinger^o, M. R. Fitzsimmons^w, A. Fominⁿ, M. Frost^{aq}, S. Gardiner^c, S. Gardner^z, A. Galindo-Uribarri^{aq}, P. Geltenbort^p, S. Girmohanta^{bb}, E. Golubeva^{ah}, G. L. Greene^w, T. Greenshaw^{aa}, V. Gudkov^k, R. Hall-Wilton^{ac}, L. Heilbronn^x, J. Herrero-Garcia^{be}, G. Ichikawa^{bf}, T. M. Ito^{ab}, E. Iverson^{aq}, T. Johansson^{bg}, L. Jönsson^{ad}, Y-J. Jwa^{an}, Y. Kamyshkov^w, K. Kanaki^{ac}, E. Kearns^g, B. Kerbikov^{al,aj,ak}, M. Kitaguchi^{ap}, T. Kittelmann^{ac}, E. Klinkby^{ae}, A. Kobakhidze^{bl}, L. W. Koerner^s, B. Kopeliovich^{bi}, A. Kozela^y, V. Kudryavtsev^{ax}, A. Kupsc^{bg}, Y. Lee^{ac}, M. Lindroos^{ac}, J. Makkinje^{an}, J. I. Marquez^{ac}, B. Meirose^{ba,ad}, T. M. Miller^{ac}, D. Milstead^{ba,*}, R. N. Mohapatra^j, T. Morishima^{ap}, G. Muhrer^{ac}, H. P. Mumm^m, K. Nagamoto^{ap}, F. Nesti¹, V. V. Nesvizhevsky^p, T. Nilsson^r, A. Oskarsson^{ad}, E. Paryev^{ah}, R. W. Pattie, Jr.^t, S. Penttilä^{aq}, Y. N. Pokotilovski^{am}, I. Potashnikova^{bi}, C. Redding^x, J-M. Richard^{bj}, D. Ries^{af}, E. Rinaldi^{au,bc}, N. Rossi^b, A. Ruggles^x, B. Rybolt^u, V. Santoro^{ac}, U. Sarkar^v, A. Saunders^{ab}, G. Senjanovic^{bd,bn}, A. P. Serebrovⁿ, H. M. Shimizu^{ap}, R. Shrock^{bb}, S. Silverstein^{ba}, D. Silvermyr^{ad}, W. M. Snow^{d,e,f}, A. Takibayev^{ac}, I. Tkachev^{ah}, L. Townsend^x, A. Tureanu^q, L. Varrianoⁱ, A. Vainshtein^{ag,av}, J. de Vries^{a,bh}, R. Woracek^{ac}, Y. Yamagata^{bk}, A. R. Young^{as}, L. Zanini^{ac}, Z. Zhang^{ar}, O. Zimmer^p

 ^aAmherst Center for Fundamental Interactions, Department of Physics, University of Massachuserts, Amherst, MA, USA
 ^bINFN, Laboratori Nazionali del Gran Sasso, 67010 Assergi AQ, Italy
 ^cFermi National Accelerator Laboratory, Batavia, IL 60510-5011, USA
 ^dDepartment of Physics, Indiana University, 727 E. Third St., Bloomington, IN, USA, 47405
 ^eIndiana University Center for Exploration of Energy & Matter, Bloomington, IN 47408, USA
 ^fIndiana University Quantum Science and Engineering Center, Bloomington, IN 47408, USA
 ^gDepartment of Physics, Boston University, Boston, MA 02215, USA

- Co-spokespersons:
 - G. Brooijmans (Columbia)
 - D. Milstead (SU)
- Lead Scientist
 - Y. Kamyshkov (UTK)
- Technical Coordinator
 V. Santoro (ESS)
- Detector Simulation Coordinator
 O B. Meirose (SU)
- See <u>our recent white paper</u>

2020

Jun

8

[physics.ins-det]

arXiv:2006.04907v1

K. Dunne | Neutron-Antineutron Annihilation Detector for nnbar@ESS | Partikeldagarna

Extra Slides

What is a "triggerless" DAQ?

S. Silverstein

Trigger Algorithms

- Initial selection based on "fast" calorimeter (& veto) data
 - Local algorithms (cell/tower)
 - Zero-suppression of low-energy hits
 - Multi-layer shower profile (particle ID, direction)
 - MIP
 - Topology algorithms (global)
 - Multi-pion event candidate
 - Cosmic track
 - Beam halo
- Physics-like algorithms (Calorimeter + Veto + TPC)
 - Matching pion candidates with TPC tracks
 - Multi-track vertex ID

