

- Cosmic rays gets accelerated up to 10²⁰eV
- Cosmic rays produce neutrinos (at the source + GZK: CR+CMB)
- Neutrinos: Excellent messenger particle
 - Electrically neutral, (almost) no mass, small interaction cross section

Experimental Challenges

- Low interaction cross section of neutrinos
- Very low neutrino flux
- → Very large volumes needed for reasonable rates

Experimental Challenges

- Low interaction cross section of neutrinos
- Very low neutrino flux
- → Very large volumes needed for reasonable rates

Experimental Challenges

- Low interaction cross section of neutrinos
- Very low neutrino flux
- → Very large volumes needed for reasonable rates
- Solution: radio technique
 - Large volumes at no cost: Antarctic ice
 - Ice transparent to radio waves (L ~ 1km)
 - A single radio station has 1km³ effective volume (comparable to IceCube)

radio

Radio Emission of Particle Showers

Askaryan effect: Time varying negative charge excess in the shower front

Cherenkov-like time compression effect

• In ice: arccos(1/n) = 56 deg

Radio Emission of Particle Showers

- Askaryan effect: Time varying negative charge excess in the shower front
- Cherenkov-like time compression effect
- In ice: arccos(1/n) = 56 deg

No neutrino detected yet with a radio detector because current detectors are too small but

- Askaryan pulse measured in lab
- Feasibility shown with cosmic-ray detectors

Detector sites

- Requirement: A lot of cold ice
 - the colder the larger the attenuation length
- South Pole (ARA, IceCube-Gen2; L~1-2km)
- Ross Ice Shelf (ARIANNA; L~0.5km)
- Greenland (RNO-G; L~1km)

The ARIANNA detector on the Ross Ice Shelf

- Moore's Bay on Ross ice shelf (-79deg)
 - 10 autonomous stations

- Size 1% of required size
 - no neutrino measured yet but
- Hardware proven reliable
- Technology ready for large scale detector

Development of wind power system

- Wind power system required for dark winter months
- Pioneered at Uppsala
 - prototype (Savant 2) survives harsh Antarctic conditions and powers station for ~50% of the time
 - Savant 3: 2x larger -> 85% uptime at Moore's Bay
 - Savant 4: 5x larger -> 80% uptime in Greenland

Neutrino Search

- Analysis of 4.5 years of data of ARIANNA test-bed array
- No neutrino found
- Demonstrates feasibility of radio technology

Event Reconstruction

- software development
- simulation (NuRadioMC) and reconstruction (NuRadioReco)
- open-source on github

The future part I: RNO-G (Radio Neutrino Observatory – Greenland)

- 35 autonomous stations
- Uppsala contributes wind power system

The future part II: IceCube-Gen2

- Large radio detector is part of IceCube-Gen2 vision
 - to increase sensitivity for E>10¹⁶eV
- >200 radio detector stations
- if founded, start of construction in 2025

Summary

- Radio detection is an intriguing (new) technique to detect neutrinos of the highest energies
- Emission properties well understood
- Technology proven in pilot arrays
- Future:
 - RNO-G: 35 stations in Greenland
 - Radio component of IceCube-Gen2: 200+ stations at the South Pole

backup

Science Potential IceCube-Gen2 Radio

Explosive sources

Diffuse neutrino flux

Science Potential IceCube-Gen2 Radio

Diffuse neutrino flux

Explosive sources

NEUTRINO IDENTIFICATION

Example: ARIANNA neutrino search

better use **Neutrinos** instead of cosmic rays

- Cosmic rays gets accelerated up to 10²⁰eV
- Cosmic rays produce neutrinos (at the source + GZK: CR+CMB)

cosmic ray

- Neutrinos: Excellent messenger particle
 - Electrically neutral, (almost) no mass, small interaction cross section
- Coincident detection with EM and gravitational waves (multi messenger)

