

The muon g - 2 short-distance

Johan Bijnens

Introduction

HLbL overview

HLbL short-distance

Conclusions

SHORT DISTANCE CONTRIBUTIONS TO THE MUON g - 2

Johan Bijnens

Lund University

Vetenskapsrådet

bijnens@thep.lu.se
http://thep.lu.se/~bijnens

Partikeldagarna 2020

Uppsala, Lund,... 23-25 November 2020

Introduction

- Magnetic moment: $\vec{\mu} = g \frac{q}{2m} \vec{S}$
- For angular momentum: g = 1
- Dirac equation: g = 2
- Structure and/or QFT give different values
- Anomaly: $a = \frac{g-2}{2}$ • QED (Schwinger): $a = 1 + \frac{\alpha}{2\pi} + \dots$

Jacob Bourjaily/Wikipedia

The muon g - 2 short-distance

Johan Bijnens

Introduction

HLbL overview

HLbL short-distance

Why do we do this?

The muon $a_{\mu}=rac{g_{\mu}-2}{2}$ will be measured more precisely

The muon g-2 short-distance

Johan Bijnens

Introduction

HLbL overview

HLbL short-distance

Conclusions

Fermilab

The muon g - 2short-distance

Johan Bijnens

Introduction

HLbL overview

Harvard

HLbL short-distance

- Experiments done for electron and muon: very precise
- $a_e^{\exp} = 115965218.073(0.028) \ 10^{-11}$
- Discrepancy 2.4 σ : α from Cs-atom interferometry or a_e $\alpha^{-1} = 137.0359990460(270)(Cs)$ $\alpha^{-1} = 137.0359991496(330)(a_e)$
- Both errors dominated by experiment (and largely systematic)
- Difference not relevant for QED part of a_{μ}

Introduction

- Experiments done for electron and muon: very precise
- $a_e^{\exp} = 115965218.073(0.028) \ 10^{-11}$
- $a_{\mu}^{\exp} = 116592089(54)(33) \ 10^{-11}$
- $a_{\mu}^{\text{the}} = 116591810(43) \ 10^{-11}$
- Discrepancy 3.7*σ*: 279(76) 10⁻¹¹
- White paper: arXiv: 2006.04822 Phys. Rep. 887 (220) 1-166
 JB,N.Hermansson-Truedsson,S.Leupold,A.Rodríguez-Sánchez (132 authors)
 Large theory collaboration, error: consensus
 Numbers (except the new ones here) taken from there
- Impressive agreement theory experiment about 13 digits in a_e and about 9 in a_μ

Harvard BNL

White paper

The muon g - 2 short-distance

Johan Biinens

u Introduction

HLbL overview

HLbL short-distance

Introduction

The muon g - 2short-distance

Johan Bijnens

Introduction

HLbL overview

HLbL short-distance

Conclusions

- $a_{\mu}^{SM}=a_{\mu}^{QED}+a_{\mu}^{EW}+a_{\mu}^{had}$
- $a_{\mu}^{QED} = 116584718.931(104) \ 10^{-11}$

up to 4 loops essentially analytically, 5-loops numerically, 6-loops estimate (main uncertainty)

• $a_{\mu}^{EW} = 153.6(1.0) \ 10^{-11}$

Done to two-loop, main uncertainty from long-distance hadronic contributions (via anomaly)

• $a_{\mu}^{\exp} - a_{\mu}^{QED} - a_{\mu}^{EW} = 7216(63) \ 10^{-11}$

Hadronic contributions

- Muon and photon lines, representative diagrams
- The blobs are hadronic contributions
- There are higher order contributions of both types: known accurately enough
- $a_{\mu}^{HVP} = 6845(40) \ 10^{-11} \ (LO+NLO+NNLO)$

•
$$a_{\mu}^{HLbL} = 92(18) \ 10^{-11} \ (LO+NLO)$$

The muon g - 2 short-distance

Johan Bijnens

Introduction

HLbL overview

HLbL short-distance

HLbL: the main object to calculate

- Muon line and photons: well known
- The blob: fill in with hadrons/QCD
- Trouble: low and high energy very mixed
- q₄ always at zero
- Double counting needs to be avoided: hadron exchanges versus quarks

The muon g-2 short-distance

Johan Bijnens

Introduction

HLbL overview

HLbL short-distance

The muon g - 2 short-distance

Johan Bijnens

Introduction

HLbL overview

S.Leupold

HLbL short-distance

Conclusions

• "Long distance": under good control

- Dispersive method: Berne group around G. Colangelo
- π^0 (and η, η') pole: 93.8(4.0) 10⁻¹¹
- Pion and kaon box (pure): -16.4(2) 10⁻¹¹
- $\pi\pi$ -rescattering (include scalars below 1 GeV):-8(1) 10⁻¹¹
- Charm (beauty, top) loop: 3(1) 10⁻¹¹
- "Short and medium distance"
 - Axial vector: 6(6) 10⁻¹¹
 - Short-distance: 15(10) 10⁻¹¹
- Clearly the last item needs improvement

Short-distance

- = $\Pi^{\mu\nu\lambda\sigma}(q_1, q_2, q_3)$
- Actually we really need $\frac{\delta\Pi^{\mu
 u\lambda\sigma}(q_1,q_2,q_3)}{\delta q_{4
 ho}}$
- Mixed short-distance: q_4 at zero, q_1^2, q_2^2, q_3^2 large • $q_i^2 = -Q_i^2$

The muon g-2 short-distance

Johan Bijnens

Introduction

HLbL overview

HLbL short-distance

- Quarkloop Quarkloop constituent SD: naive SD: correct SD: numerical
- SD: perturbative

Conclusions

 $a_4=0$

- Use (constituent) quark loop
- Used for full estimates since the beginning (1970s)
- Used for short-distance estimates with mass as a cut-off JB, Pallante, Prades, 1996

• We recalculated:

- In agreement with quarkloop formulae from Hoferichter, Stoffer, private communication
- In agreement with known numerics

The muon g - 2 short-distance

Johan Bijnens

Introduction

HLbL overview

HLbL short-distance

Quarkloop Quarkloop constituent SD: naive SD: correct SD: numerical

SD: perturbativ

Quarkloop: *u*, *d*, *s*

- M_Q provides an infrared cut-off, $M_Q
 ightarrow 0$ divergent
- About 12×10^{-11} from above 1 GeV for $M_Q = 0.3$ GeV
- About 17×10^{-11} from above 1 GeV for $M_Q = 0$

Quarkloop

The muon g-2 short-distance

Johan Bijnens

Introduction

HLbL overview

HLbL short-distance

Quarkloop

Quarkloop constituent

SD: naive

SD: correct

SD: numerical

SD: perturbative

Conclusions

• Is it a first term in a systematic OPE?

- OPE has been used as constraints on specific contributions
 - $\pi^0 \gamma^* \gamma^*$ asymptotic behaviour
 - Constraints on many other hadronic formfactors
 - $Q_1^2 pprox Q_2^2 \gg Q_3^2$ Melnikhov, Vainshtein 2003
- JB, N. Hermansson-Tuedsson, A. Rodríguez-Sánchez, Phys.Lett. B798 (2019) 134994[arxiv:1908.03331]
 +Laub, JHEP 10 (2020) 203 [arxiv:2008.13487]
 +to be published (soon?)

Short-distance: first attempt

$$\Pi^{\mu\nu\lambda\sigma} = -i \int d^4x d^4y d^4z e^{-i(q_1\cdot x + q_2\cdot y + q_3\cdot z)} \left\langle T\left(j^{\mu}(x)j^{\nu}(y)j^{\lambda}(z)j^{\sigma}(0)\right)\right\rangle$$

- Usual OPE: x, y, z all small
- First term in the expansion is the quark-loop no problem with $\partial/\partial q_4^{\rho}$ and $q_4 \rightarrow 0$

p in loop \Rightarrow no singular propagators:

• Next term problems: no loop momentum;

 $q_4
ightarrow 0$ propagator diverges:

The muon g-2 short-distance

Johan Bijnens

Introduction

HLbL overview

HLbL short-distance

> Quarkloop Quarkloop constituent

SD: naive

SD: correct

SD: perturbative

Short-distance: correctly

- Similar problem in QCD sum rules for electromagnetic radii and magnetic moments
- loffe, Smilga, Balitsky, Yung, 1983
- For the q₄-leg use a constant background field and do the OPE in the presence of that constant background field
- Use radial gauge: $A_4^{\lambda}(w) = \frac{1}{2}w_{\mu}F^{\mu\lambda}$ whole calculation is immediately with $q_4 = 0$.
- First term is exactly the usual quark loop (quark masses: next order)

The muon g - 2short-distance

Johan Bijnens

Introduction

HLbL overview

HLbL short-distance

Quarkloop Quarkloop constituent SD: naive

SD: correct

SD: numerical SD: perturbative

Short-distance: next term(s)

- Do the usual QCD sum rule expansion in terms of vacuum condensates
- There are new condensates, induced by the constant magnetic field: $\langle \bar{q}\sigma_{\alpha\beta}q\rangle \equiv e_q F_{\alpha\beta}X_q$
- Lattice QCD Bali et al., arXiv:1206.4205 $X_u = 40.7 \pm 1.3$ MeV,
- Only starts at $1/Q^2$ via $m_q X_q$ corrections to the leading quark-loop result
- X_q and m_q are very small, only a very small correction
- X_q: contain IR divergent perturbative parts, combine with the m²_q corrections from the quark-loop consistently
- Next order: very many condensates contribute, lots of IR mixing and redefinitions.

The muon g - 2short-distance Johan Bijnens

for the set of the set

HLbL overview

HLbL short-distance

Quarkloop Quarkloop constituent SD: naive

SD: correct SD: numerical

SD: perturbative

Short-distance: numerical results

Order	Contribution	$Q_{ m min}=1{ m GeV}$	$Q_{\min} = 2 \mathrm{GeV}$	
$1/Q_{ m min}^2$	quark-loop	$1.73\cdot10^{-10}$	$4.35\cdot10^{-11}$	
$1/Q_{ m min}^4$	quark-loop, m_q^2	$-5.7\cdot10^{-14}$	$-3.6\cdot10^{-15}$	
	X _{2,m}	$-1.2\cdot10^{-12}$	$-7.3 \cdot 10^{-14}$	
$1/Q_{\min}^6$	X_{2,m^3}	$6.4 \cdot 10^{-15}$	$1.0\cdot10^{-16}$	
,	X_3	$-3.0\cdot10^{-14}$	$-4.7 \cdot 10^{-16}$	
	<i>X</i> ₄	$3.3\cdot10^{-14}$	$5.3 \cdot 10^{-16}$	
	X_5	$-1.8\cdot10^{-13}$	$-2.8 \cdot 10^{-15}$	
	X_6	$1.3\cdot10^{-13}$	$2.0 \cdot 10^{-15}$	
	<i>X</i> ₇	$9.2\cdot10^{-13}$	$1.5\cdot10^{-14}$	
	$X_{8,1}$	$3.0\cdot10^{-13}$	$4.7 \cdot 10^{-15}$	
	X _{8,2}	$-1.3\cdot10^{-13}$	$-2.0 \cdot 10^{-15}$	

LUND UNIVERSITY

The muon g - 2short-distance

Johan Bijnens

Introduction

HLbL overview

HLbL short-distance Quarkloop Quarkloop

SD: naive

SD: correct

SD: numerical

Conclusions

• $Q_1, Q_2, Q_3 \ge Q_{\min}$

- Nonperturbative short-distance corrections are small
- Suppression by small quark masses or small condensates
- Nonperturbative short-distance corrections are small

Short-distance: $1/Q_{\min}^2$

• Can we understand scaling with Q_{\min} ?

•
$$a_{\mu} = \frac{2\alpha^3}{3\pi^2} \int_0^\infty dQ_1 dQ_2 Q_1^3 Q_2^3 \int_{-1}^1 d\tau \sqrt{1-\tau^2} \sum_{i=1,12} \hat{T}_i \overline{\Pi}_i$$

- Do $Q_i
 ightarrow \lambda Q_i$
- overall factor goes as λ^8
- Quark loop has no scale thus $\hat{\Pi}_i$ scale with their dimension $\hat{\Pi}_1, \hat{\Pi}_4 \sim \lambda^{-4}, \qquad \hat{\Pi}_7, \hat{\Pi}_{17}, \hat{\Pi}_{39}, \hat{\Pi}_{54} \sim \lambda^{-6}$
- $\Longrightarrow \overline{\Pi}_{1,\dots,4} \sim \lambda^{-4}$ $\overline{\Pi}_{5,\dots,12} \sim \lambda^{-6}$
- Expand the T_i for $Q_i \gg m_{\mu}$: $T_1 \sim m_{\mu}^4$, $T_{i\neq 1} \sim m_{\mu}^2$ $T_1 \sim \lambda^{-8}$, $T_{2,3,4} \sim \lambda^{-6}$, $T_{5,...,12} \sim \lambda^{-4}$
- Put all together: quark-loop scales as $a_{\mu}^{
 m SD~ql}\sim\lambda^{-2}$
- $m_q X_q$ adds an overall factor $\Longrightarrow a_\mu^{{
 m SD} X_q} \sim \lambda^{-4}$

The muon g - 2 short-distance

Johan Bijnens

Introduction

HLbL overview

HLbL short-distance

Quarkloop Quarkloop constituent SD: naive SD: correct **SD: numerical** SD: perturbative

Perturbative corrections

The muon g-2 short-distance

Johan Bijnens

Introduction

HLbL overview

HLbL short-distance

Quarkloop Quarkloop constituent SD: naive SD: correct

SD: numerical

SD: perturbative

Conclusions

- Representative diagram:
- Use method of master integrals: ⁴⁴disadvantage: large numerical cancellations between integrals

000

- All integrals are known
- Infrared and UV divergences in individual diagrams
- Dimensional regularization: $d = 4 2\epsilon$
- All $1/\epsilon^3, 1/\epsilon^2, 1/\epsilon^2$ cancel
- Several independent calculations that agree
- Find some typos in integral papers (I hate signs)

Perturbative corrections

The muon g-2 short-distance

Johan Bijnens

Introduction

HLbL overview

HLbL short-distance

Quarkloop

constituent

SD: naive

SD: correct

SD: numerical

SD: perturbative

- Preliminary results
 a^{HLbL SD gluonic}_μ = -1.7 10⁻¹¹
- $Q_{\min}=1$ GeV, $lpha_{\mathcal{S}}=0.33$
- Main uncertainty: how do we handle α_S
- No sign that it is very large (about -10%)

Conclusions

- We have shown that the massless quarkloop really is the first term of a proper OPE expansion for the HLbL
- We have shown how to properly go to higher orders
- We have calculated the next two terms in the OPE
 - NLO: suppressed by quark masses and a small X_q
 - NNLO: large number of induced condensates but all small
 - Numerically not relevant at the present precision
- Gluonic corrections about -10%
- Why do this: matching of the sum over hadronic contributions to the expected short distance domain
- Finding the onset of the asymptotic domain

LUND UNIVERSITY The muon g-2short-distance

Johan Bijnens

Introduction

HLbL overview

HLbL short-distance

