

Overview of Higgs Physics In ATLAS

Partikeldagarna 2020

November 23, 2020

David Shope

KTH Royal Institute of Technology

Outline

- Overview of latest activities from ATLAS Higgs + "Higgs and Diboson Searches" (HDBS) groups, with a focus on analyses benefiting from Swedish contributions
 - ightharpoonup Higgs precision measurements (H->WW*)
 - Search for charged Higgs bosons (multi-lepton final states)
 - HH searches
 - $-bb\gamma\gamma$ combination
 - $-bb\tau\tau$ future prospects

Introduction

Higgs boson <u>discovered</u> in 2012 during Run 1 of the LHC

Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC

- At the time, referred to simply as "a neutral boson with a measured mass of 126.0 ± 0.4 (stat) ± 0.4 (sys) GeV"
- More complete picture of the Higgs sector now possible with access to Run 2 dataset
 - Precision measurements of fermion/boson couplings and properties
 - Searches for rare processes predicted by the Standard Model (SM), including HH production
 - Searches for physics beyond the SM,
 e.g. charged Higgs boson
- Latest results shown last month at <u>Higgs 2020</u> conference
- Even further scrutiny on offer with Run 3 and ultimately HL-LHC

H->γγ results from Run 1 ATLAS

arXiv:1307.1427
Phys. Lett. B 726 (2013) 88

SM H->WW* Measurements

Uncertainty

- WW* second largest branching fraction behind bb
- All leading production modes can be probed
 - Clean final state, triggering on leptonic decay of W
- Simultaneously measure ggF+VBF channels
 - Two different flavour ($e\mu + \mu e$), opposite sign leptons
 - Split into bins of number of jets

-
$$N_{jets} = 0.1 = ggF; N_{jets} 2 + = VBF$$

 Associated production with W/Z measured as well arXiv:1903.10052 in separate analysis: Phys. Lett. B 798 (2019) 134949

Events H_{VBF} $H \rightarrow WW^* \rightarrow e v \mu v$ \sqrt{s} = 13 TeV, 36.1 fb⁻¹ Mis-Id 120 100F preselection 80 level **60**-20 0 0 N_{iet}

Production

gluon gluon fusion (ggF)

vector boson fusion (VBF)

SM H->WW* ggF+VBF Couplings

Partial Run 2 dataset (2015-2016), 36 fb-1

$$\mu_{\text{ggF}} = 1.10^{+0.21}_{-0.20}$$
 $\mu_{\text{VBF}} = 0.62^{+0.36}_{-0.35}$

arXiv:1808.09054 Phys. Lett. B 789 (2019) 508

σ	Zoobs	Z _o exp
ggF	6.0	5.3
VBF	1.8	2.6

- Discriminating variable used in profile likelihood fit:
 - ggF: dilepton + $E_{\rm T}^{\rm miss}$ transverse mass (m_T)
 - VBF: Boosted Decision Tree (BDT) trained on variables exploiting unique event topology of VBF
 - VBF measurement limited by statistical uncertainty

SM H->WW* ggF+VBF Couplings

Full Run 2 dataset (2015-2018), **139 fb**-1

ATLAS-CONF-2020-045

- VBF result presented in July as CONF note at ICHEP 2020
 - Final discriminant based on DNN
 - First observation for specific production and decay

7.0 (6.2)
$$\sigma$$
 obs (exp)

No longer statistically limited

$$\mu_{\text{VBF}} = 1.04^{+0.24}_{-0.20}$$

$$\sigma_{\text{VBF}} \cdot \mathcal{B}_{H \to WW^*} = 0.85^{+0.20}_{-0.17} \text{ pb}$$

- Ongoing effort to publish first full Run 2 paper
 - Include $ggF \ge 2$ jets measurement for the first time in Run 2
 - Include measurement in "Simplified Template Cross-Section" (STXS) framework
 - Result to be included in combination with other Higgs boson decay channels

Searches for Charged Higgs Bosons

- Multiple analyses searching for pair production of double charged Higgs bosons
 - Here showing recent result using 3 channels based on number of leptons: two same-charge / three / four
 - Lund University involved in searches for similar signatures:
 - Direct leptonic decay of charged Higgs boson pair pp -> $H^{++}H^{--}$ -> ℓ + ℓ + ℓ ℓ

<u>arXiv:1710.09748</u> Eur. Phys. J. C 78 (2018) 199 + <u>CERN-THESIS-2019-352</u>

ATLAS-CONF-2020-056

- Simple Higgs extension model with new scalar S produced together with a SM Higgs boson (pp -> SH)

HH - Motivation

- Measure shape of global Higgs potential
 - $V(h) \sim \lambda v^2 h^2 + \lambda v h^3 + (\lambda/4) h^4 ...$

- HH cross-section depends strongly on e.g. value of Higgs self-coupling
 - Very small in SM -> destructive interference, maximal at $\kappa_{\lambda} \equiv \lambda_{HHH} / \lambda_{SM} = 2$
- Directly search for BSM resonances:

Many decay modes to study, non-exhaustive list:

33%

7.4%

0.26%

HH->bbγγ

- Trigger on $\gamma\gamma$ events, with two search categories defined by 1 or 2 *b*-jets and a 0 *b*-jet control category for data-driven γ +jet background shape estimation
- Fit $m_{\gamma\gamma}$ in non-resonant channel and $m_{\gamma\gamma jj}$ in resonant channel, which is sensitive to a generic scalar X decaying to HH arXiv:1807.04873
- Upper limits for the non-resonant HH cross-section obtained using tight selection
- Exclusion limits on resonant HH production obtained using both loose and tight selections
- Ongoing efforts to incorporate full Run 2 dataset, expected in early 2021
 - Recently public full Run 2 <u>CMS result</u> reaches 5.5x SM cross-section limit
 -> improvements in analysis techniques offer additional sensitivity beyond the expected benefit from 36 fb⁻¹ -> 139 fb⁻¹

	Observed	Expected	-1σ	+1\sigma
$\sigma_{gg o HH}$ [pb]	0.73	0.93	0.66	1.3
As a multiple of $\sigma_{\rm SM}$	22	28	20	40

JHEP 11 (2018) 040

HH->bbττ

<u>arXiv:1808.00336</u> Phys. Rev. Lett. 121, 191801 (2018)

- Two final states, $\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$, with three event categories accounting for different trigger strategies
- Require additionally 2 *b*-jets as well as a di- τ invariant mass $m_{\tau\tau}^{\text{MMC}} > 60 \text{ GeV}$
- BDT trained to separate signal from background used as discriminating variable in profile likelihood fit
- Constrain both resonant and non-resonant cross-sections

		Observed	-1σ	Expected	+1 σ
	$\sigma(HH \to bb\tau\tau)$ [fb]	57	49.9	69	96
$ au_{ m lep} au_{ m had}$	$\sigma/\sigma_{ m SM}$	23.5	20.5	28.4	39.5
	$\sigma(HH \to bb\tau\tau)$ [fb]	40.0	30.6	42.4	59
$ au_{ m had} au_{ m had}$	$\sigma/\sigma_{ m SM}$	16.4	12.5	17.4	24.2
Combination	$\sigma(HH \to bb\tau\tau)$ [fb]	30.9	26.0	36.1	50
Combination	$\sigma/\sigma_{ m SM}$	12.7	10.7	14.8	20.6

Best individual channel limit at the LHC based on 36 fb-1

HH Combination

• Sensitivity of the Standard Model HH search is driven by the final states bbbb, bb $\tau\tau$, and bb $\gamma\gamma$

<u>arXiv:1906.02025</u> Phys. Lett. B 800 (2020) 135103

 $\kappa_{\lambda} \equiv \lambda_{HHH} / \lambda_{SM}$

• These three channels are used to set limits on κ_{λ} :

$$-5.0 < \kappa_{\lambda} < 12.0 @ 95\% CL$$

Boosted Resonant HH->bbττ

- Novel analysis technique developed: di-τ tagger
 - Reconstruct and identify hadronically decaying $\tau^+\tau^-$ pairs with large Lorentz boost
 - Taus appear as "subjets" inside a single large-R jet
 - Designed benchmark with 60% ID efficiency
- Search performed as single-bin counting experiment for each mass point

HH - Future Prospects

Run 2

139 fb-1

Run 3 ~350 fb⁻¹ Update all public results with full Run 2 statistics, while including improvements to the current analysis techniques

 Design methods to interpret HH searches in terms of Effective Field Theory (EFT) parameters

• Possibility to observe ZH -> $bb\gamma\gamma$ / $bb\tau\tau$ as an intermediate step towards measuring HH production (see Christina's talk tomorrow)

e.g. ZH (Z->bb, H-> $\gamma\gamma$) has cross-section 3.7x that of corresponding HH

HL-LHC	
3000 fb ⁻¹	

Channel	bbbb	bb au au	$bbWW(\ell\nu\ell u)$	$bb\gamma\gamma$	$bbZZ(\ell\ell\ell\ell)$
$\mathcal{B}\left[\% ight]$	33.9	7.3	1.7	0.26	0.015
Number of events	37000	8000	1830	290	17

 Arrive at statistics sufficient for HH evidence/observation

Channel	Statistical-only	Statistical + Systematic
$HH \rightarrow b\bar{b}b\bar{b}$	1.4	0.61
$HH o b ar{b} au^+ au^-$	2.5	2.1
$HH o bar b\gamma\gamma$	2.1	2.0
Combined	3.5	3.0

Summary

- Analyses targeting properties of the Higgs sector continue to be a vital component of the ATLAS physics program, with a lifetime of another decade and beyond
- Sweden's ATLAS groups provide critical expertise and person-power across many of the ongoing areas of Higgs activities
- Di-Higgs production remains one key component to a better understanding of the Higgs sector, offering (among other things) the ability to probe the Higgs self-coupling
 - Swedish Di-Higgs Working Group established to pool resources and facilitates collaboration between experimentalists and theorists

BACKUP