SWEDISH INSTITUTES' CONTRIBUTIONS TO THE ATLAS UPGRADES

Partikeldagarna - Uppsala University - 23-25 November 2020

Eleni Myrto Asimakopoulou on behalf of the Swedish ATLAS Institutes

Uppsala Universitet

RUN-3 & HIGH-LUMINOSITY LHC (HL-LHC)

Good physics studies rely on:

- reproduction of a process of interest (collision)
- enough statistics

 $N_{events} \leftrightarrow L \sigma_{event}$

- \hookrightarrow N_{events}: # times process occurs
- $\hookrightarrow \sigma_{\text{event}}$: probability of process to occur
- \hookrightarrow L: luminosity

Upgrades:

Higher beam energies \hookrightarrow Run-3: 13 – 14 TeV \hookrightarrow HI-I HC: 14 TeV

Higher Luminosity

- \hookrightarrow HL-LHC: $L_{\text{peak}} \sim 5-7.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- \hookrightarrow HL-LHC: $L_{int} \sim 3000(4000) fb^{-1}$

Eleni Myrto Asimakopoulou

ATLAS DETECTOR & DATA ACQUISITION

ATLAS UPGRADES - HL-LHC

Higher Radiation levels

- \hookrightarrow detectors will be damaged
- \hookrightarrow electronics will not cope with these conditions

· Higher Pile-Up

- \hookrightarrow bandwidth saturation
- \hookrightarrow detectors will not be able to cope

Upgrade

- \hookrightarrow Detector materials
- $\hookrightarrow \mathsf{Electronics}$
- \hookrightarrow Trigger & Data acquisition system

Eleni Myrto Asimakopoulou

pixel TDR: CERN-LHCC-2017-021 strip TDR: CERN-LHCC-2017-005

Purpose & Design

· Identify and track charged particles Reconstruct primary vertices \Rightarrow identify hard scattering

 \hookrightarrow jet energy measurements, particle isolation, missing transverse momentum

- Radiation tolerant!
 - $m \hookrightarrow$ 10 yrs operation under 1.3 × 10¹⁶ n_{eq}/cm² (pixel)/ 1.6 × 10¹⁵ n_{eq}/cm² (strips)
- All silicon detector (n-type implants on p bulk)
 - \hookrightarrow 6 *m* long, 2 *m* in diameter,
 - $|\eta| = 4$ coverage.

ΙΤκ

Scandinavian Cluster:

- Four_participating institutes in Scandinavia:
 - → Uppsala University (UU)
- \hookrightarrow Lund University (LU)
- → Niets Bohr Institute (NBI)
- \hookrightarrow University of Oslo (UiO)

Activities

- Pledged for ~10% of the whole end-caps production (R1, R3 module types)
- Module production in industry (NOTE)
 UU: responsible for Quality Assurance and some Quality Control procedures during module production
- Module testing in institutes
 ↔ LU: responsible for Quality Control of modules
- + Readout ASIC irradiation campaign
- + Assembly Tool preparation
- + Thermal Testing ("ColdBox") jig preparation
- + Readout Scheme

HTT TDR: CERN-LHCC-2017-020

HARDWARE TRACK TRIGGER (HTT)

UPPSALA UNIVERSITET

Motivation

- · Higher luminosities \Rightarrow more events
- · Resource limitations for data recording
- · Need same trigger efficiency

Single Hardware Trigger senario: (baseline)

- $\cdot\,$ Provide good quality tracks to the software trigger
- Acts as a co-processor for the software trigger, lightening the load
- Software trigger is in charge of requesting tracking from HTT

Regional (rHTT) and Global (gHTT) tracking: \hookrightarrow rHTT: tracking on regions of interest (10% of full ITk data) at 1 *MHz* \rightarrow reconstruct tracks with $p_T > 2 \text{ GeV}$ \hookrightarrow gHTT: tracking on full ITk data at 100 *kHz* \rightarrow reconstruct tracks with $p_T > 1 \text{ GeV}$

! Can evolve for use in the hardware-based Level-1 trigger \hookrightarrow dual-level hardware trigger \rightarrow reconfiguration of HTT

Plan

- · Improve trigger level reconstruction
 - \hookrightarrow currently software-based tracking,
 - \hookrightarrow addition of hardware-based trigger to reduce the load

(HTT): based on the existing hardware tracking input to the software trigger

TP → AMTP & SSTP

Design

HTT

- custom Associative Memory ASICs for for pattern recognition and FPGAs for track reconstruction and fitting
- · Flexible, modular
- Presently preparing a system demonstrator (v0)
- Optimizations with respect to the original Technical Design Review
 ↔ cost reduction!

AM chip Legacy HW shown

HW model

UU Involvement

- Development of alternative pattern recognition to AM based (requires custom made ASICs) on Hough transform (implemented in firmware)
- $\cdot\,$ Data format definition and test-vector preparation $\hookrightarrow\,$ uniform format across all boards & simulation
- Offline simulation studies

 \hookrightarrow investigation of benefits to the HTT simulation from including minimalisic extrapolation of charged tracks through the ITk

- \hookrightarrow prospect studies of using HTT to trigger on Long Lived Particles
- · Online control & monitoring of the pattern recognition Menzanine cards Eleni Myrto Asimakopoulou eleni.myrto.asimakopoulou@physics.uu.se

TILE CALORIMETER (TILECAL)

TileCal TDR: CERN-LHCC-2017-019

Eleni Myrto Asimakopoulou

Particle Physics & Instrumentation Division C. Clement: TileCal upgrade project leader (up-to Oct.'20)

TILECAL

Overview

- scintillating plastic tiles and steel absorbers hadron calorimeter
 - \hookrightarrow readout with photomultipliers and wavelength shifting fibers
- hadronic jet energies & missing transverse momentum
- input to the trigger system

Upgrade SU

- replace most exposed photomultipliers
- · replace and redesign read out electronics
 - \hookrightarrow fully digital, using full granularity
 - \Rightarrow higher precision
 - \hookrightarrow Readout at 40MHz (1.7 ms) \rightarrow LHC timing.
 - \hookrightarrow Higher radiation tolerance

HIGH-GRANULARITY TIMING DETECTOR (HGTD)

HGTD TDR: CERN-LHCC-2020-007

Eleni Myrto Asimakopoulou

HGTD

B. Lund-Jensen: Institute Board Chair, co-coordinator for the Electronics group J. Strandberg: co-coordinator for the Luminosity & DAQ group C. Ohm: co-coordinator for the Sim/Perf/Physics group (up-to mid. 2020)

Scope & Design

- More collisions at close distances
 → Difficult to distinguish tracks (! forward region)
 → Assign high-precision time information to tracks
- \cdot Enhance performance of physics object reconstruction \hookrightarrow Augment ITk capabilities in the forward region
- · Precise luminosity determination

KTH

- Design based on silicon pixels

 → Low Gain Avalanche Diode technology, 1.3 × 1.3 mm²
- \cdot 2.4 < $|\eta|$ < 4.0, 120 mm < R < 640 mm
- \cdot <time resolution> per track: 30 ps (start)

Luminometer capabilities

- Fast & high granularity \Rightarrow low occupancy \Rightarrow good linearity of hits to the interaction rate \Rightarrow per bunch crossing readout at 40MHz rate (no trigger bias, "online") and offline
- \cdot 2.4 < $|\eta|$ < 2.8
- $\cdot\,$ Lower systematic uncertainties in luminosity measurements

KTH Involvement

- luminosity processing system
- produced overall design and performed TDR simulations studies
 Eleni Myrto Asimakopoulou

LUMINOSITY CHERENKOV INTEGRATING DETECTOR (LUCID)

LUCID Upgrade Doc: 2018 JINST 13 P07017

LUCID

Scope & Overview

· Luminosity measurements

 → average number of detector hits recorded per bunch crossing & charge integration
 → Run2,3: main online and offline luminometer for ATLAS.

 2 modules, placed symmetrically from the interaction point Each module:

 \hookrightarrow 4 groups of 4 (16) photomultipliers with quartz windows

 \hookrightarrow 4 bundles of quartz fibers

Upgrade

Eleni Myrto Asimakopoulou

- LUCID-2 (Run3): Prototype detectors under development with photomultipliers in new locations and new quartz fiber detectors.
 → detector gain measured with Bi-207
 - \hookrightarrow fiber degradation monitoring with LEDs and PIN diodes
- LUCID-3 (HL-LHC): New photomultipliers and new fiber detectors

 \hookrightarrow final design depends on Run3 result with prototype detectors

SUMMARY

- High Luminosity LHC
 - \hookrightarrow Motivated by physics searches.
 - \hookrightarrow Upgrades in the ATLAS detector.

Inner Tracker

- \hookrightarrow New all-silicon design, with larger η range.
- \hookrightarrow UU & LU involved in the production of detector modules and the ITk readout scheme.

Hardware Track Trigger

- \hookrightarrow Employment of a Hardware track trigger to allow better trigger capabilities for physics.
- ← UU heavily involved in the project management and contributes in data format compatibility, offline simulation software and online monitoring & control of Menzanine cards.

· Tile Calorimeter

- \hookrightarrow Replacement of current components.
- \hookrightarrow New electronics readout system.
- \hookrightarrow SU involved in the upgrade and in charge of preparing the DaughterBoard.

High Granularity Timing Detector

- \hookrightarrow Time stamping of charged particles' tracks.
- $\hookrightarrow {\sf Luminometer\ capabilities}.$
- \hookrightarrow KTH involved in management of project and in charge of the luminosity processing system.

· Luminosity Cherenkov Integrating Detector

- \hookrightarrow Upgrades for Run-3 and HL-LHC.
- \hookrightarrow LU leads the project and is in charge of preparing detector prototypes.

QUESTIONS?

Eleni Myrto Asimakopoulou

INDIVIDUAL CONTRIBUTIONS

ITk	UU	Richard Brenner	Scandinavian cluster activities coordinator, Industry contact, QA/QC procedures
			Assembly jig preparation, ASIC irradiation studies
	LU	Torsten Akesson	Scandinavian cluster activities coordinator
	LU	Geoffrey Mullier	Scandinavian cluster activities coordinator, QC procedure, Thermal jig studies
			ASIC irradiation studies
	LU	Else Lytken	Scandinavian cluster activities coordinator
	UU	Eleni Myrto Asimakopoulou	QA/QC procedures (industry & inhouse)
	UU	Jonas Steentoft	QA/QC procedures (industry & inhouse)
	LU	Alexander Ekman	Thermal jig studies
	UU	Thomas Mathisen	Trigger test procedures and Readout scheme studies
	LU	Lennart Osterman	Electrical Engineer
	UU	Nils Bingefors	Electrical Engineer
	UU	Lars Erik Lundqvist	Workshop
HTT	UU	Richard Brenner	Project Officer
	UU	Rebeca Gonzalez Suarez	Data format definition and test-vector preparation
	UU	Olga Sunneborn Gudnadottir	Offline simulation studies (optimization and prospect studies)
	UU	Jonas Steentoft	Online control & monitoring of the pattern recognition Menzanine cards
TileCal	SU	Sam Silverstein	DaughterBoard hw and fw development
	SU	Christian Bohm	DaughterBoard development
	SU	Eduardo Valdes Santuro	DaughterBoard hw development, lead fw developer
	SU	Katie Dunne	Developer for ProAsic3 design on daughterboard
	SU	Suhyun Lee	Developer for power system design on daughterboard
	SU	Christophe Clement	Upgrade project leader (2018-20), work with testbeam, demonstrator and radiation tests
HGTD	KTH	Bengt Lund-Jensen	Institute Board Chair, co-coordinator for the Electronics group,
			Lumi processing system development
	KTH	Jonas Strandberg	co-coordinator for the Luminosity & DAQ group, Lumi processing system development
	KTH	Christian Ohm	co-coordinator for the Sim/Perf/Physics group (up-to mid. 2020)
			Lumi processing system development
	KTH	David Shope	Lumi processing system development
	KTH	Olle Lundberg	Lumi processing system development
LUCID	LU	Vincent Hedberg	Project leader, Detector prototype preparation

Eleni Myrto Asimakopoulou