Observing the sky continuously at extreme photon energies with ALTO/CoMET

Mohanraj Senniappan

PhD Student, Linnaeus University.

Yvonne Becherini, Michael Punch, Jean-Pierre Ernenwein, Satyendra Thoudam, Tomas Bylund

Partikledagarna - 3rd Oct 2019 - Linköping

The Energetic Universe

- Very high energy photons: 100 GeV to 100 TeV.
- Unlike Cosmic rays, y-rays travel rectilinearly in the Universe.
- Helps to understand particle acceleration in extreme environments like AGN jets, accretion disks, supernova remnant etc.,
- Also to test Lorentz-Invariance Violation and effects of axion-like particles.

Cen A

3C 279

The ALTO Observatory

ALTO is a future ground-based very high energy gamma-ray observatory based on water Cherenkov technique. The key features include,

- In the Southern hemisphere → Daily observations of Southern sources

- Wide field of view
- Hybrid detectors
- Excellent timing accuracy
- Modular design
- Simple to construct
- Open Observatory

- Continuous Monitoring → Observations may be done 24h per day
- At high altitude (> 4 km)
 → Low threshold E ≥ 200 GeV
 - → ~2 steradian
 - → Improved S/B discrimination
 - → Improved ang. resolution(~ 0.1° at few TeV)
 - → Phased construction and easy maintenance
 - → Minimize human intervention at high-altitude
- Long duration experiment → Should operate for 30 years
 - → Distribute data to the community

Planned ALTO Detector Design

A unit of water Cherenkov detector with Scintillator base

An array of 1242 units

Summary of Monte Carlo Simulation & Analysis

Signal over Background Discrimination

ALTO performance plots

PKS 2155-304 at z = 0.116 in flaring state

A BL Lac at z = 0.6 in flaring state viewed through galactic plane

ALTO Prototype at Linnaeus University

Monitoring

Future Steps of ALTO

- Completion of the current simulations.
- Continuous monitoring of the prototype and installation of two new Buwa tanks – a cheaper industrial solution in steel.

- A cluster installation on site in Peru/Argentina.
- We will be happy to welcome new interested collaborators from Sweden .

Future Steps of ALTO - CoMET

Idea: enhance the sensitivity of ALTO during darkness with HiSCORE.

- First observations with ALTO and mini-HiSCORE stations at Linnaeus University this autumn during darkness, beginning from the end of October.
- Weather Station installed on top of a tank for monitoring the sky quality
- First simulations of CoMET on the ALTO full array to start this autumn.

Live Event Display in YouTube

Live Stream Link

Follow our blog in, alto-gamma-ray-observatory.org for future updates.

Thank you for your attention

BACKUP SLIDES

Backup slide: VHE Gamma-ray Astronomy

VHE y-rays in Atmosphere

• Pair production and Bremsstrahlung radiation generates cascade of e^+ , e^- and γ -rays leads to air shower.

Ground based observation

- Air Cherenkov Telescopes H.E.S.S., MAGIC, VERITAS
- Particle Detectors ALTO, LHAASO, HAWC

Back up slide: Charge in data

Backup slide: ALTO/CoMET

Cosmic Multiperspective Event Tracker

Among all the advantages of particle detection in gamma-ray astronomy, there are also some limits:

- The position of the shower maximum is difficult to reconstruct,
- Limited angular resolution in the low energy range.

Our new investigation channel:

– During darkness, couple the detection of the particles in the shower with the detection of Cherenkov light in the atmosphere.

