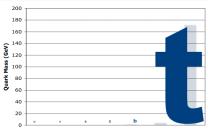
Top quark physics: Standard Model and beyond

Venugopal Ellajosyula

On behalf of the ATLAS collaboration October 2, 2019

Uppsala University



Contents

- Motivation
- Standard Model (SM) measurements
- BSM searches with top quarks
 - Supersymmetry (SUSY)
 - Composite Higgs Models (CHM)
 - Dark Matter (DM)

The top quark

- Third generation of quarks predicted by Kobayashi and Maskawa in 1973
- ullet b-quark discovered by E288 experiment in 1977 \Rightarrow discovery of the sixth quark imminent
- ullet 18 years later, on March 2 1995, the top-quark with a mass of $176{\pm}18$ discovered by CDF and D0

 What are its properties? Why so heavy? More likely to couple to new physics because of mass?

Top quark and new physics

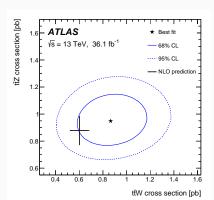
- SM predicts top kinematics
- Measurement of top quark properties gives a cross-check for SM
 - Deviations imply new physics
- New physics likely at high mass scales ⇒ can couple to SM through the top quark.

Can measure:

- Mass
- Width
- Pair-production rate
- Single-production rate
- Electroweak couplings
- Polarization
- ..

Measurement of $t\bar{t}W$ cross-section

- Direct probe of the weak couplings of the top-quark
- Deviations from the SM can be parametrized in the framework of SM Effective Field Theory in a model independent way
- No deviations


 Set constraints on the weak couplings of the top quark in the SMEFT context.
- $t\bar{t}W$ important background for many SM processes like $t\bar{t}H$
- ATLAS measurement with 36.1 fb⁻¹ of data collected during 2015 and 2016

$t\bar{t}$ decay	Boson decay	Channel
$(\ell^{\pm}\nu b)(q\bar{q}b)$	$\ell^{\pm} u$	SS dilepton
$(\ell^{\pm}\nu b)(\ell^{\mp}\nu b)$	$\ell^\pm u$	Trilepton

Results: Cross-sections

arxiv:1901.03584

- ullet $\sigma_{tar{t}W}=$ 0.87 \pm 0.19 pb \Rightarrow No significant deviations from SM
- Further constraints on Wilson coefficients in the framework of SMEFT
- On-going analysis with full Run 2 data

Higgs fine-tuning problem

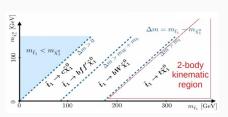
- Higgs mechanism responsible for generating masses of SM particles
- Mass of the Higgs boson itself destabilized by quantum effects
 → Higgs fine-tuning problem

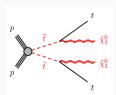
$$V(\phi) = \mu^{2} |\phi|^{2} + \lambda |\phi|^{4}$$
$$\mu^{2} = m_{bare}^{2} - \frac{|\lambda_{f}|^{2}}{8\pi^{2}} \left(\Lambda_{UV}^{2} + \dots\right) + \dots$$

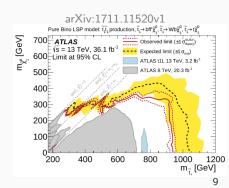
- Largest corrections from top quarks
- This leading correction can be controlled if there exist new particles with properties similar to those of the top quark
- Two main classes of solutions studied in the SHIFT project:
 - Supersymmetry
 - Composite Higgs Models (CHM)

Solving the Higgs Fine-Tuning problem (SHIFT) Supersymmetry

 Every SM particle has a 'super'partner with similar properties but a spin that differs by half a unit

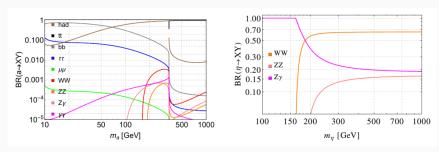



$$\mu^2 = m_{bare}^2 - \frac{|\lambda_f|^2}{8\pi^2} \left(\Lambda_{UV}^2 + ...\right) + \frac{\lambda_S}{16\pi^2} \left(\Lambda_{UV}^2 + ...\right) + ...$$


- Cancellation if $\lambda_S = |\lambda_f|^2$
- Higgs boson mass protected by chiral symmetry
- Dominant sources of fine-tuning are removed by scalar top squarks or stops

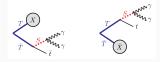
Direct search for stops

- Search in the 1-lepton channel, where one of the top decays leptonically and the other hadronically
- The lightest neutralino is assumed to be LSP, therefore present in the final state
- Focuses in the 2-body kinematic region where $\Delta m(\tilde{t}, \chi) > mt$, $\tilde{t} \to t \chi$ becomes dominant
- On-going analysis with full Run 2 data

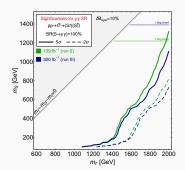

Solving the Higgs Fine-Tuning problem (SHIFT) Composite Higgs models

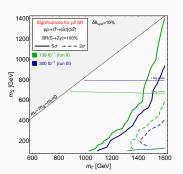
- The Higgs boson is a composite pseudo-Nambu-Goldstone boson (pNGB) from spontaneous breaking of a global symmetry in a new strongly coupled sector → This protects the Higgs mass
- Such models predict new vector-like top (VLT) partners.
- ATLAS and CMS have searched for such top-partners decaying to SM particles $(T \to Ht, Zt, Wb) \Rightarrow$ Bounds around 1.3 TeV
- ullet These searches assume 100% branching to SM particles ightarrow Constraints relax if this is not true

Collaboration between theorists and experimentalists at Uppsala University and Chalmers University to study BSM decays of VLT.

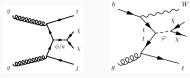

Exotic decays of vector-like top partners

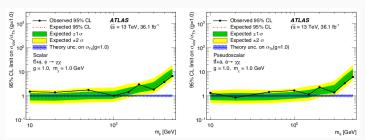
- Many models predict non-standard decays of VLT
- Example: $T \rightarrow St$, where S can be a scalar or a pseudo-scalar
- Branching ratios of these exotic states depend on their properties




Bizot, Cacciapaglia, Flacke 18

Possible final states of interest


- Model independent search for VLT with decays to non-SM particles decays to exotic scalar + t/b
- Signal: $pp \to T\bar{T} \to tS(\to Z\gamma/\gamma\gamma) + X$
- Optimistic reach in Run 2 and Run 3 evaluated in 1907.05929



Dark matter and tops

- Dark Matter (DM) candidates possible in several models, like SUSY, 2HDM+a
- Final states involving tops: $tW + E_T^{miss}$, $t\bar{t} + E_T^{miss}$ 1711.11520

- ullet Overlap possible between the $tar{t}+E_T^{miss}$ and $tW+E_T^{miss}$ @NLO (See Olga's talk)
- $t\bar{t}$ + DM analysis: 1ℓ , jets, and E_T^{miss} with the (m_{med}, m_χ) benchmarks of (20,1) and (300,1) GeV
 - On-going analysis with full Run 2 data

Summary

- Top portal is a good place to look for new physics either via measurements of SM processes or through direct searches.
 Plenty of work on-going to that end in Sweden.
- Measurements of $t\bar{t}W$ cross-sections
 - No significant deviations from SM.
 - Constraints on Wilson coefficients using SMEFT.
- Searches for stops in single lepton final states on-going with full Run 2 data.
- New searches for vector-like top partners possible in final states with $\gamma\gamma$ and $Z\gamma$.
- DM+top searches to constrain masses of dark matter candidates in two channels: $t\bar{t}$ +DM, and tW+DM.
 - Overlap between channels may need to be treated separately.